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In muliiple regression we have a continnous response variable and two of more
continmous explanatory variables (i.e. ao categorical explanatory variables). There are
several important issues mvolved in carrying out a multiple regression:

The moral is clear. When you have covariates (like imitial size in this exampie), then use
them, T_his can do po harm, because if the covariates are not significant, they wil! drop
out duriag model simplification. Also remember that in Amncova, order matters. So
always start medel simpiification by removing the highesi-order intersction terms first. In
Ancova, me:se Interaction terms are differences between slopes for different factor levels
(recall that in mult-way Anova, the interaction terms were differences between means) : = curvature in the response to the explanatory variables,
Other :}ncnvas are described in Chapters 13, 14 and 16 in the context of count data‘ :
preportion data and bicary response variables. i ,

s which explanatory variables to include,

s interactions between explanatory variables,

= correlation between explanatory variables,
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Coefificie

The approach recoromended here is that before yoa begin modelling in eamest you do

: ) >t .
Estimate Std. Error tvalus Pri>|tl} two things:

{Intercept) 1.1932358 0.559G022 1.9%2 0.048963 *

£ 0.0419157 0.00558635 7.534 1.8le-11 **= - . . .

w?;:g ~0.9258189 0 0546539 —-4.040 0.000102 *+% e use tree models o investigate whether there are complicated interactions, and
rad 4.0022097 0.0004989 4,429 2.33e-05 *x* o use generafized additive models (gam’s) to investigate curvatire.

I (wind™2) 0.0068%82 0.0022052 2.868 0.004993 ¥

Residual standard errcr: 0.4514 on 105 degrees of freedom A Simple Exampie
Multiple R-Squared: 0.6974, Adjusted R—squared: 0.685%9

F-statistic: 60,5 on 4 and 105 OF, p-value: 0

Let's begin with an example from air pollution studies. How is ozone concentration
related to wind speed, air temperaturs and the intensity of solar radiation?

Finally, plot{model9) shows that the variance and normality are weil behaved, so we
can stop at this point. We have found the minimal adeguate model It is on a scale of
log(ozone concentration), all the main effects are significant, but there are no interac-
tiens, and there is a single quadratic term for wind speed {five parameters in ail, with 105
d.f for eror).

A More Complex Example

In'the next example we introduce two new difficulties: more explanatory variables and
fewer data points. it is another air pollution dataframe, but the response variable in this 4
cage 18 suiphur dioxide concentration. There are six continuous expianatory variables:

ozone. pollution < -read.table("c:\ttemp\\ozone. data.td" header=T}
attach{ozone.pollution} :
names{ozone.pollution)

£ 1] "rad" "temp” "wind" "czone"

In multiple regression, it is always a good idea w0 use pairs to laok at all the corelations:

pairs(ozane, pollution, panei = panel.smooth)

pofjute < -read.fable("c\{temp\\sulphur.dioxide.txt" header =T)
attach(pollute)
names(pollute)
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radiation. The next step might be to fit a tree model to see whether complex interactions

Q850 150 250 65 0 15 90 botween the explanatory varizbfes are indicated:
The response variable, ozone concentration, is shown on the ¥ axis of the bottom row of library{lree)
panels: there is a strong negative relationship with wind speed, a positive correlation with i
- ~ =
temperature and a rather unclear, but possibly hurnped relationship with radiagion. ggg;l o d;?)ae(ozone data=ozone.pollution)

A good way ta start a multiple regression problem is using non-parametric simoothers

in 2 generalized additive model (gam) like this: text(modet)

This shows that temperature is for and away the most important factor affecting
ozoue concentration (the longer the branches in the tree, the greater the deviance
explained), Wind speed is important at both high and low temperatures, with still air

library(mgcv}
par{mfrow=c(2,2))
model < -gam(ozone ~ s{rad) + s{temp} + s(wind)}

piot{model)
par{mfrow=c(1,1))

- T]_le cm_zﬁdcnce intervals are sufficiently narrow to suggest that the curvature in the
rs}azlor:_shl? between ozone and temperature is real, but the curvature of the relationship
with wind is questionable, and a linear model may well be ajt that is required for solar

being associated with higher mean. ozore levels {the figures at the ends of the branches
are mean ozone concentrations). Radiation shows an interesting, but subtle effect. At low
temperatures, radiation matters at relatively high wind speeds (7.15), whereas at high
temperatures, radiation matters at relatively low wind speeds (<10.6}; in both cases,
however, higffmr radiation is associated with higher mean ozone concentration. The tres
model therefore indicates hat the interaction stucture of the data is not particularly
complex {a reassuging finding).
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lemp < 825 Naxt, we remove the loast significant two-way interaction term — in this case wind-tad

modei3 < -update{model2, ~. — wind:rad)
summasy(modei3}

then lry removing the temperature by wind interaction:

modeld < -update(model3, ~. — tempiwind)
summary({modeld)

wind £ 7,
tanp i 8.8

rod 479.5 5 754 agls vozao o7t We shall retzin the wmarginally significant interaction between temp and rad
1222 (p = 0.04578) but leave out all other ioteractions. In model 4, the least significant
quadratic term js for rad, so we delete this:

§1.00
20,97 24.56

Arraed with this background information (Jikely curvature of the temperature response
and an wicomplicated interaction structure) we can begin the finear modelling, We start model5 < -update(model4, ~, — l(rad~2)}
with the most complicated model: this inclades interactions batween all three explanatory \ summary(imodei5}
vatiabies plus quadratic terms to test for curvatre m response 10 each of the three -

eXplanatory variables:
& 1y variables This defetion has rendered the tempirad interaction insignificant, and caused the mein

cffect of radiation to become insignificant. We should try temoving the temprad

modelt <-Im{ozone ~ temp*wind*rad + i(rad*2) + l{fempa2) + l(wind 2)) interaction

summary{model1)

Coefficlents: '
Estimate Std. Error ©value Pr(>|ti) modelf <-update(model, ~. - tempirad)
{Intercept) 5.683e+02  2.073e+02 2,741 0.00725 *% . summary(made(6)
temp -1.076e+01 4.303e+00 -2.501 0.014¢01 * Coefficients: .
wind =3.237e+01 1.173e+01 -2.760 0.00687 ** Estimate Std. Error twalue Pri>|t]) !
rad ~3.117e-01 5.585e-01 -0.558 0.57799 ) {Intercept) 291.16758 100.87723 2.886 0.00473 **
I(rad"2} -3.619e-04 2.573e~04 -1.407 3.16265 temp ~6.33955 2.71627 -2.334 . 0.02150 *
I {temp~2) 5.833e-02 2.39%6e-02 2,435 0.01668 * wind -13.3%674 2.29623 -5.834 6.05e-08 *¥*
I{wind*2) 6.106e-01 1.46%e-01 4,157 6.81la-05 **x rad 2.06586 0.02005 3.285 0.00139  #%
temp:wing 2.377e-01 1.367e-01 1.739%9 0.08518. I(temp™2) 9.085102 0.01774 2,878 0.00488 **
temp: rad 8.402e~03 7.512e-03 1.119 0.26602 I (wind~2) 0.46464 0.14060 4.61% 1.i0e-05 #***
wind:rad 2.054e-02 4.892e-02 0.420 -0.87552
temp:wind:rad -4,324e-04 6.595e~04 -~0.656 0.51358 ! Residual standard error: 18.23 on 105 degrees of freedom
Residual standard error: 17.82 on 100 degrees of freedom Multip}e R,—Squamd: 0.713, Adjusted R-squared: 0.6394
Multiple R-Squared: ©.7394, Adjusted R-squared: 0.7133 F-statistic: 52.18 on 5 and 105 ¥, p-valua: ¢
F-statistic: 28.37 on 10 and 100 DF, p-value: 0 ‘ . ’
Now we are making progress. All the terms in model 6 are significant. At this stage, we
The three-way imteraction s clearly not significant, so we remove il to begin the should check the assumptions, vsing plot{modei6): .
precess of model simplification: There is a clear pattern of vadaace increasing with the mean of the fisted values. This is
bad news (heteroscedasticity), Also, the normality plot is distinctly curved; again, this is
modei2 < -update(modeit, ~, ~ temp:wind:rad) " bad pews. Let’s &y transformation of the response variable. There are no zeros ia the
summary(modelZ) tesponse, 50 a log transformation is worth trying:
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. Coefficients:
Residuals vs Fitted Normal Q- ?M Estimate Std. Error ¢ value Px{>|t])
2 44 - - {Intercept) 0.7231644 0.6457316 1.120 0.26528
3 20 temp 0.0464240 0.0059218  7.748 5.94e-12 *w
§ % R ; : wind ~{,2203843 0.0587744 -3.687 0.00035 **~
3 2 . / rad 0.0025295  0.0005404  4.681 8.49e-0§ *++
& § A E{wind~2) 0.0072233  0.0026292 2.747 0.00706 k¥
0'4; : Residual st\a.ndard. error: §.4936 cn 106 degrees of freadom
0 20 40 60 80 100 120 2 4 0 1 32 Multipie R-Squared: 0.6868, Adjusted R-squared: 0.675
Fited valugs Thaasetleal Quanlias F-statistic: 58.11 on 4 and 106 DF, p-value:
plot{modsia)
Scale-Location piot Cook’s distance plot
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madel7 <-Im{log(ozone} ~temp + wind + rad + i{tempA2) 4+ Hwind 2)) i . . .
summary(rnodef?) o Scale-Location plot 2l ‘Cock‘s distance plot
Coefficients: E m | 26* h] °
. Estimate Std. Error tvalue Pri{>|t]) H :w:"'_,n :.. :410:" o .| =&
{Intercept) 2.5538486  2.7358735  0.933  0.35274 § 1 FmBTe . | 2al
temp ~0.0041416 0.0736703 -0.056  0.95528 g3l wiant | 35
wind ~0.2087025  0.0622778 ~3.351  0.00112 *¥ ol e g il dasadil g
rad 9.0025617 0.0003437 4,711 7.582%06 wx+ ® 20 25 20 35 40 45 50 = o m 4 0 a0 w0
I{temp"2} 0.00032312 0.0004811 0.689 (.49255 ! Filied vabuss Obe, numbar
I{wind"2) 0.0067378 0.0027284 2.469 0.01514 * .
Residual standard error: 0.49482 on 105 degrees of freedom
Multiple R-Squared: 0.6882, Adjusted R-squared: 0.6734 ’ The heteroscedasticity and the son-normality have been cured, but there is now a
F~statistic: 46.36 on 5 and 103 DF, p-value: 0 bighly influential data point (number 17 on the Cook’s plot), We should refit the model
: with this poiat left out, to see if the parameter estimatés er their standard crrors are
On the log{ozone) scale, there is no evidence for a quadratic term in temperalure, so areatly affected:
let's remove that:
madeid <-m{log{ozone) ~temp + wind + rad + {wind*2),subset=(1:langth
medel8 < -update(madel7, ~. — l{tempr2)) {ozone)l =17)) :
summary(model8} summary(modeld)




