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Abstract — Term discrimination values have been used to characterize and select poten-
tial index terms for use during automatic indexing. M&%@;he calcu-
lation of discrimination values have been suggested. These approaches differ in their

caleulation of space density; one method uses the average document-pair similarity for

erﬂﬁcia!, “average” document, the centroid,

and computes the sum of the similarities of each document with the centroid. The Tormer

“method has been said to produce “exact” discrimination values and the latter “approx-
imate™ values.

This article investigates the differences between the algorithms associated with these
two approaches (as well as several modified versions of the algorithms) in terms of their
impact on the discrimination value model by determining the differences that exist
between the rankings of the exact and approximate discrimination values. The experi-
mental results show that the rankings produced by the exact approach and by a centroid-
based algorithm suggested by the author are highly compatible. These results indicate
that a previously suggested method involving the calculation of exact discrimination val-
ues cannot be recommended in view of the excessive cost associated with such an
approach; the approximate (i.e., “exact centroid™) approach discussed in this article yields
a comparable result at a cost that makes its use feasible for any of the experimental doc-
ument collections currently in use.

1. INTRODUCTION

1.1 The vector space model
One of the major models in information retrieval is the vector s . This model
views cach document in the document collection as a set of unique content terms or word
types. Each document is then considered to be a term vector, and the complete document
collection becomes a vector space of dimension m, where m is the number of unique terms
or word types in the collection. Thus a document vector, d;, is represented by a set of
l‘c."ms dy, 1 <k = m, where d;, represents the frequency (weight) of term k in document
J (i.e., the number of times term k appears in document j). If dj, = 0, term k does not
appear in document d;. Queries in the vector space model, like documents, are represented
by weighted term vectors. !
~ Given any two term vectors, the similarity between the vectors may be assumed to be
inversely related to the angle between them. Thus, if the vectors coincide, the angle between
them is zero, and the vectors are identical. In two dimensions, the vector space may be rep-
fesented by its envelope. The (normalized) document vectors are then viewed as points in
lh"—: Vvector space, and the distance between any two points is inversely related to the simi-
h"f‘)‘ of the corresponding document vectors. That is, the smaller the distance between two
po:_nts, the smaller the angle between the corresponding vectors, and the greater the simi-
larity of the vectors in terms of the number of word types they have in common. :
Dne Slal_lon et a}. [_4—6] have shown that tl:lc best document space for retrieval purposes is
which maximizes the average separation between documents in the document space.
) the f:;h:is Paper is based on the conventional view of the vector model, wherein certain assumptions, such as

0, ser l::ar. cach term included in a given document or query vector is orthogonal to the other terms, are made
- = [2.3] for another view of the vector space model.
L30ur

Universiry ces required to support this work were provided by the Computer Science Department of Cornell



SRR

6 C.J. CroucH

In such a space, it is easier to distinguish between documents and thus presumably to !
retrieve documents that are most similar to a given query. The model that allows the terms
in a collection to be ranked according to their effect on space density is called the discrimi- |
nation value model.

1.2 The discrimination value model |

The discrimination value model is based on a premise developed by Salton, Yang, and |
Yu [1]. These researchers felt that a framework that assigned specific roles to single terms,
term phrases, and term classes was needed to provide a unified view of content analysis
procedures. Such a framework is provided by the discrimination value model, which has -
the concomitant advantages of offering both a reasonable physical interpretation of the
indexing process and a means whereby each potential index term in a collection can be |
ranked in accordance with its usefulness as a document discriminator.

Consider a collection of documents, each represented by a set of weighted /m-dimen- }
sional vectors. Then the similarity coefficient computed between any two term vectors can
be interpreted as a measure of the closeness or relatedness between the vectors in m-space.
If the similarity coefficient is large, the documents are very similar and appear in close prox-
imity to each other in the document space. Contrariwise, if the similarity coefficient is °
small, the documents exhibit little similarity and are widely separated in the document
space.

The discrimination value of a term is then defined as a measure of the change in space
separation that occurs when a given term is assigned to the document collection [4]. A
“good discriminator” is a term which, when assigned to a document, decreases the space
density (i.e., renders the documents less similar to each other). The assignment of a “poor
discriminator,” on the other hand, increases the density of the space. By computing the }
density of the document space before and after the assignment of each term, the discrimi- §
nation value of the term can be determined. The terms can then be ranked in decreasing |
order of their discrimination values. i

Discrimination value has been used by Salton, Yang, and Yu to determine three cat- i
egories of discriminators, namely, good, poor, and indifferent discrimintors. A term with §
a positive discrimination value has been found to be a good discriminator; Salton et al. sug- §
gest that these terms be used directly as index terms. Those terms with negative discrimi- §
nation values are poor discriminators; the retrieval properties of such terms can be
transformed by including them in appropriate phrases. The majority of terms are indiffer- §
ent disciminators with near-zero discrimination values; the retrieval capabilities of these §

terms can be enhanced via their incorporation in appropriate thesaurus classes.

If one is concerned with the construction of thesauri or phrase dictionaries, in par- §
ticular, it is important to know that the terms being considered for inclusion in the thesau- 3|
rus class or phrase dictionary have the appropriate discrimination values‘_'[hggq[etica}li, ;
for example, all terms in a thesaurus class should be indifferent discriminators. Terms used J
‘&5 phrase heads in the phrase construction process should be negative discriminators. And |
the “best” discriminators, used directly as index terms, are the top n terms when the terms §
are ranked in decreasing order of their discrimination values. Although the exact placement
of each term in the ranking is not critical, the fact that a term lies within a certain range |
(e.g., the top 20 percent) or has a negative discrimination value can be used to determine §
the role that term should play in the indexing process.

Two different approaches are used for the calculation of discrimination value. These
methods, as well as several modifications that offer substantial operational improvements,
are discussed in a following section. s

1.3 Similarity measure
A common measure of the similarity between two vectors d; and d, is the cosine
function

d;-d,

cos ) = T 1o,
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where d;j-d, is the inner product and Id,-n" = (dj-d;). This relationship may also be
expressed as

o
Pk
L di-dy R

cos(d; dy) =~
d
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This is the similarity measure used to compute discrimination value in the context of
this article.

2. APPROACHES TO THE CALCULATION OF TERM DISCRIMINATION VALUE

Two approaches to the calculation of discrimination value have been suggested. One
approach, the so-called “exact” approach, involves the calculation of all pairwise similar-
itics between the document vectors of the collection. The other, “approximate” approach
involves the generation of a centroid vector and the calculation of the similarity of each
document with the centroid. A discussion of these two approaches follows,

2.1 The exact approach

A vector space in which the documents are as far apart as possible is a space in which
D, the space density, is minimized. Using cosine as the similarity measure, the space den-
sity is defined as

n n
D=A E E cos(d;,dy)
j=lk=1

Jek
D represents the average (pairwise) similarity or density of the document space for
some constant A (such as 1/n(n — 1) [1]). To determine the effect of removing a particu-
lar term from the collection, we recompute the density of the document space as follows.
Let d] represent the document vector d ; with term / removed. Then D;, the density of the
document space with term i removed from the collection, is

D;=AY ¥ cos(d,di) :
Jj=1k=1
JEk
and the discrimination value of term i, DV;, may be calculated for each term i by the
equation

DV,= A(D, - D)

2.2 The approximate approach ;

The second approach to the calculation of discrimination value involves a computa-
tion of space density that is based on the sum of the similarities of each document with
fhc centroid of the document space, rather than on the calculation of all pairwise similar-
ities between documents. In this approach, the centroid, ¢, of the document collection is
defined as ¢ = (¢;,¢;,....6n), Where

; n
R =1nYdy 1sksm
i=1

The density of the document space, D, can now be calculated using the centroid as

D=4 i: cos(c,d;) \ '
j=1

Lo
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Let ¢' represent the centroid vector ¢ with term / removed. The density of the docu-
ment space with term i removed, D;, may now be expressed as

D; =AY cos(c',d})

J=1

and the discrimination value of term i, DV}, can be computed for each term i again using
the formula

DV, = A(D;, - D)

Salton [1,5] sees these two approaches as alternative but equivalent approaches to the |
calculation of term discrimination value, with the centroid approach being more feasible |
from a computational view, Other authors consider the centroid approach an approxima-
tion to the exact method (involving the calculation of all pairwise similarities). For exam-
ple, in a recent article, Willett reports on an algorithm for the calculation of “exact term
discrimination values” based on a modification of the basic algorithm that calculates n/2
pairwise similarities [7].

Although it is obvious that two such different methods, applied to the same collec-
tion, will generate different term discrimination values, the more pertinent question relates
to the differences in the rankings of those discrimination values. Following the computa-
tion of the discrimination value DV; for all terms i, the terms can be ranked in decreasing
order of discrimination value. Such a ranking will reveal those terms with strongly posi-
tive discrimination values (good discriminators that may be used directly as index terms),
those terms with near-zero discrimination values (indffferent discriminators whose retrieval
performance may be enhanced via their incorporation in thesaurus classes), and the terms
with negative discrimination values (poor discriminators, whose retrieval effectiveness may
be transformed by their inclusion in appropriate phrases). What differences exist between ;
the discrimination value rankings of terms produced via (1) the exact method, involving
the computation of all pairwise-similarities, and (2) the approximate or centroid approach?

In this article, the results of an investigation into this question are reported. Four dif-
ferent algorithms to compute discrimination value were implemented. A discussion of these §
algorithms follows.

N

3. THE ALGORITHMS

3.1 The basic exact algorithm

The first algorithm for the calculation of term discrimination value involves the com-
putation of n(n — 1)/2 pairwise document similarities for each of the m word types or |
unique terms in the collection. This algorithm, which computes exact discrimination val- §
ues, is herein referred to as the Basic Exact Algorithm. Using a C-like notation, this algo-
rithm may be delineated as shown in Figure 1 (where A represents a constant.) !

The complexity of this algorithm is O(mn?). In experimental document collections,
the magnitude of m may well exceed that of », making this algorithm computationally §
infeasible for collections of other than trivial size. {

3.2 The modified exact algorithm

Regardless of the method used to compute discrimination value, a key factor is the
number of documents that actually contain a particular term, say /. In calculating Dv; in
the Basic Exact Algorithm (see Fig. 1), the summation is made over all i, although approx-
imately 50 percent of the index terms will occur in only one document if the terms are dis-
tributed according to Zipf’s law [8]. In a recent article, Willett [7] suggests a modification
of the basic algorithm. using the cosine measure, he defines «, 8, and v as:
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1fi € d;,dy, a=(d,-d, —di-d})/V(d;-d, — d}-d}) * (d,-d, — dy-d}) — cos(d;,dy).

ifiedoonly, 8= (d-d)/Vd -4 * (d-dy — di-di) — cos(d;,d,).

fiedonly, y=(d-d)/V(d;d; — di-di) * (dy-dy) — cos(d;,dy).

Using these definitions, Willett presents his modification of the Basic Exact Algorithm,
which is called the Modified Exact Algorithm (Fig. 2).

/* initialize space density D */
D=0;
/* compute D by calculating n(n - 1)/2
pairwise document similarities */
for (j=1;j—n—-1j++)]|

for{k =j+ Lik—mk++)|

D =D + cos(d;.dy);
1

/* for each of m word types, compute Dy, the
space density with term i removed */
for (i=lii~mi++)|
Dy,
for (j=1;j=n—1;j++){
for (k=j+ Lik—nik++)
Du, = D, + cos(d;,di);
|

/* compute DV, the discrimination value of term i */
DV,=A* (Dy, - D); .

Fig. 1. The Basic Exact Algorithm

/* initialize space density D */
/* initialize m locations to hold Dv;, the space
density with term i removed */
for (i=Li—mi++){
Du, =0
|
/* for each of m word types, compute Duv;, the
space density with term i removed */
for (j=1;j—n—1j++)1
for (k=j+ Lk+mk++)|
D =D + cos(d;,dy):
for (i=1l;i=mi++)|
if (dy>0)1{
if (d; >0}
Dv, = Dv; + o;/* ied,ied, */
else
Du,=Dv +8; /*i gdy,ied, */
]

elsef
if (d;>0)
Dv;=Dy;+v; /* ied;,ied, */
I
|
i
I
Fig pute DV, the discrimination value of term i */
for {(i=l;i—mi++)|
DV,=A*Dy,;
}

Fig. 2. The Modified Exact J\Iga_rithm . =

\

S



10 C.J. CroucH

In the Modified Exact Algorithm, n(n — 1)/2 pairwise similarities must be calculated.
The complexity of the algorithm is still O(mn?), but the number of increments («,8,7)
associated with each similarity calculation depends on the actual number of terms in each
vector, which is very small compared to m. Let ¢; represent the set of terms contained in
d; and | ;| represent the number of elements in the set #,. Then the number of increments
associated with each similarity calculation is [£;| + |t:] — |(#; N )], making the total
number of increments proportional to tn®, where 7 is the mean number of terms con-
tained in a vector. Moreover, the running time of the algorithm may be substantially
reduced by using inverted lists to store the document vectors. However, the algorithm
requires m additional storage locations to hold the Dv, as they are calculated.

3.3 The basic centroid algorithm

In contrast to the exact algorithms presented in Figures 1 and 2, the other common
approach to the calculation of discrimination value is based on calculating the pairwise sim-
ilarity of each document in the collection with the centroid vector. This Basic Centroid
Algorithm, of complexity O(mn), is presented in Figure 3.

3.4 The modified centroid algorithm

Crawford [9], having noted that few documents actually contain term i and using
cosine as his similarity measure, suggests a revision of the Basic Centroid Algorithm, called
the Modified Centroid Algorithm (Fig. 4).

The Modified Exact Algorithm is based on three modifications: (1) The summation
of Dv; in Figure 3 is made over all documents. Because few documents contain term i,
cos(c',di) is identical to cos(e,d;) in most cases. To compute Dv;, for each document j in
which term i occurs (i.e., dj # 0), Crawford computes Dv; using the formula

Dv; = D — cos(c,d;) + cos(c',dj)

Although the purpose of this modification is to reduce the number of similarity coef-
ficients that must be calculated to compute Duy;, this modification insures that the dis-
crimination values calculated via this algorithm will differ somewhat from those produced
by the centroid algorithm of Figure 3. The discrepancy comes from the fact that for each

/* calculate centroid vector ¢
with coefficients ¢, */
for (k= Lk=mk++)|
G =0;
for (j=1l;j—=nj++)1
=0+ dys
J

c=clm
I
/* initialize space density D */
D=0,
/* compute D as the sum of the similarities
of each document vector d with ¢ */
for [j=1;j=mj++)]|
D =D + cosie,d;);

|
/* for each of m word types, compute Dy;, the
space density with term i removed */
for (i=Lii~mi++)|
Du,=0;
for (J=Lj~nmj++)l
1 Dv; = Dv, + cos(c',d;);

/* compute DV, the discrimination value of term { */
DV,=A*(Dv, - D);

Fig. 3. The Basic Centroid Algorithm
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/* calculate centroid vector ¢
with coefficients ¢, */
for (k= l;k—mk++)|

c=0;

for (j= L j=nmj++)]

Ce=cCet+dy,;

|

ce=c/m;
|
/* initialize space density D */
D=0;
/* compute D as the sum of the similarities
of each document vector d with ¢ */
for (j=1;j~nmj++)|

D = D + cosic, dy);

/* for each of m word types, compute Duv,, the
space density with term f remo{veﬂd ¥ b e
for (i=Liemi++)| XL WOOveR =
/* initialize Dv; to D */
Dv,=D;
for (j=1ij=mj++)f
if (d,>0) /*if ied; */ _
; Du; = Du; — cos(e,d)) + cos(c', d)):

/* compute DV, the discrimination value of term | */
DV,=A" (Dv, - D);

ey {I £8 O P 3
eV LI

Fig. 4. The Modified Centroid Algorithm

document d;, if term 7 is not found in d;, then the contribution of term i to Dy; is com-
pued as

cos(e,dj) = c-dj/v'c‘l: *d;-d;

rather than its actual value of

cos(c,d)) = e-dy/V(c-¢c — ¢'-¢') * d;-d

(2) Crawford suggests the storing of partial sums calculated during the execution of
D = D + cos(c,d)); that is,

cos(c,dj) = c-d;/ve-¢ * dy-d;

and the values of ¢-d; and d;-d; are stored for each j, j = 1,...,n, as the space density D
is calculated. A buffer of 2n locations is required to hold these values, which are then used
rather than recomputed during the calculation of Dv;. (Note that ¢-c is a function of the
centroid and is hence a constant that need be calculated only once.)

(3) The third refinement suggested by Crawford is the use of inverted lists to hold the
document vectors.

Although the complexity of Crawford’s algorithm is still O(mn), the actual number
of computations involved in calculating the similarity coefficients is greatly reduced, since
a new Dv, is computed only if term i is actually present in document j and the storage of
partial sums makes much of the arithmetic unnecessary. The use of an inverted file fur-
ther reduces the execution time.

3.5 The exact centroid algorithm

Another possibility now presents itself. Consider using the centroid method and storing
the partial sums during the calculation of the space density as suggested by Crawford.
Define o and 8 as follows:

i



12 C.J. CroucH

ified, a=(cd-d-d)/V(cec—c-c)=*(d-d-ddj).

ifigd, B=cd/V(c-c—c-c)=(dd)

where ¢-d; and d;-d; for j = 1,...,n are the values saved (at a cost of 2n storage loca-
tions) during calculation of the centroid. (Recall that ¢-¢ is computed only once.) We now
define the Exact Centroid Algorithm (see Fig. 5). This algorithm represents a modification
of the Basic Centroid Algorithm which allows the “exact” space density associated with the
removal of term i to be calculated, rather than an approximation to it (as in the case of
the Modified Centroid Algorithm).

This approach increases the number of similarity coefficients that must be computed
during the calculation of the Dv, over those produced by the Modified Centroid Algo-
rithm, since Dv, is modified by either « or 8 (depending on whether term { is or is not con-
tained in d;), rather than simply requiring the calculation of two similarity coefficients for
each term / contained in d;. Hence, the execution time of this algorithm will be somewhat
longer than that of the Modified Centroid Algorithm (assuming that both algorithms use
inverted lists), and the ranks of the resulting discrimination values can be expected to dif-
fer from those produced by that algorithm.

To determine the differences in (1) ranks of the resulting discrimination values and
(2) execution times of the various algorithms, the algorithms were run on three different
document collections. The result of these investigations are presented as follows.

4. THE EXPERIMENTS

4.1 Methodology
The following algorithms were implemented:

1. The Basic Exact Algorithm (Fig. 1).

2. The Modified Exact Algorithm (Fig. 2).

3. The Modified Centroid Algorithm (Fig. 4).
4, The Exact Centroid Algorithm (Fig. 5).

/* calculate centroid vector ¢
with coefficients ¢, */
for (k=1 k—mk++)|
=0
for (j=lj=nj++}
o = Cp + diss
l

€ =/,
]
/* initialize space density D */
D=0;
/* compute D as the sum of the similarities
of each document vector d with ¢ */
for (j=Li=mj++)1
D = D + cos(e,d));

/* for each of m word types, compute Du,, the
space density with term § removed */
for (i=Lii—=mi++)]
Dy, =10,
for (j=lij=nj++){
if (d,>0)
Du,=Dv, + a; /* ied; */ 4
else {
Dui=Dv; + 8, /*igdy*/ 1
1
/* compute D¥,, the discrimination value of term / */
DV.=A*(Dv, - D);

Fig. 5. The Exact Centroid Algorithm
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The basic algorithm was run, for purposes of comparison, only on the smallest doc-
ument collection (ADI). The time required to process even this very small collection clearly
indicates that this approach is prohibitive for collections of larger size. Each of the three
remaining algorithms was run on each of the three test collections: ADI, Medlars, and
CACM. The characteristics of these collections are found in Table 1. (For more complete
descriptions of these collections, see [10,11,12].) The collections are available through the
Smart experimental retrieval system at Cornell University.

4.2 Empirical results

The amount of time taken to execute each algorithm on each collection is specified
in Table 2. Inverted lists were used in each algorithm to improve the execution times. The
same similarity measure (cosine) was used in each case.

Table 2 demonstrates that the Modified Exact Algorithm is indeed a significant improve-
ment over the Basic Exact Algorithm. It also shows that the Modified Exact Algorithm,
of order O(mn?), is still extremely expensive compared with the centroid approaches
(both O(mn)). This is due to the fact that, although the execution time is reduced by the
modifications as previously described, the cost associated with the n(n — 1)/2 similarity
coefficients that must still be calculated cannot be reduced and dominates the algorithm.
In the centroid approaches, the n similarity coefficients (of ¢ with d;, j = 1,...,n) that
are computed during the calculation of the space density D can be “reused” later in the
algorithm when saved as partial sums. The cost associated with the calculation of these
similarity coefficients becomes even greater if inverted lists, which can substantially de-
crease processing costs when used with a suitable similarity measure (such as cosine), can
no longer be used. Some similarity measures (e.g., pnorm) preclude the use of inverted
iists. The cost associated with the computation of the similarity coefficients is the major
component reflected in the figures of Table 2.

Given that the costs associated with the Modified Exact Algorithm are overwhelmingly
greater than those of the centroid algorithms, the only reason for choosing the former
merhod over the latter would be the supposed superiority of the resulting discrimination
values (i.e., the “exact” versus the “approximate”). To determine the differences in the
ranks of the discrimination values produced by each of the algorithms, the resulting dis-
crimination values were sorted in descending order, and the Spearman rank correlation [13]
was computed between the values produced by the base case (the Modified Exact Algo-
rithm) and those produced by the Modified Centroid and the Exact Centroid Algorithms.
The results are shown in Table 3.

Table 1. Collection statistics

Number of Number of Mean number of

Collection vectors (n) terms () terms per vector
ADI 82 822 25.5
Medlars 1033 6927 51.6
CACM 3204 8503 27.5

Table 2. Time statistics®

Collections
Algorithm ADI Medlars CACM
Basic Exact (Fig. 1) 7,385 — —
Modified Exact (Fig. 2) 219 121,640 25,6148
Modified Centroid (Fig. 4) 14 2,468 8,104
Exact Centroid (Fig. 5) 38 4,379 14,765

*CPU time in seconds.

H
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Table 3. Spearman rank correlations

Collections
Algorithm ADI Medlars CACM
Basic Exact (Fig. 1) 1.00 - —
Modified Exact (Fig. 2) 1.00 1.00 1.00
Modified Centroid (Fig. 4) 0.66 2 0.91
Exact Centroid (Fig. 5) 1.00 1.00 0.98

i
i
Table 3 indicates that the rankings of the discrimination values produced by the \-Iod-'
ified Exact and the Exact Centroid Algorithms are very similar, with the ranking produced
by the Modified Centroid Algorithm being somewhat less similar to the base case. The par-
ticular terms of interest are those occurring in the top n percent of the collection (whlch
are used without transformation as index terms) and those with negative discrimination vaJA‘
ues (which may be transformed into more desirable index terms via their incorporation in
phrases). Once these two sets are identified, the remaining terms (indifferent discrimina.
tors) are candidates for inclusion in thesaurus classes. To determine the actual 51m11ar1t3r
between the rankings, the top n percent of the terms produced by each centroid a]gonthm
were compared to the corresponding top n percent of the terms produced by the \1od1f1ed
Exact Algorithm. The results of these comparisons are found in Table 4.
When the terms produced by the centroid algorithms are ranked in decreasing order
of discrimination value and the top n percent of the terms in each set are examined, ‘h‘?.
Exact Centroid Algorithm produces a set of terms that has more terms in common wit
the top n percent of the terms in the base case than does the set produced by the Modi-
fied Centroid Algorithm. This is true for all values of » and over all three collections (ADI
Medlars, and CACM). Moreover, a statistical test shows that the difference between the
proportions of terms matching with the base case is highly significant.
Consider now the sets of negative discriminators produced by each algorithm. When
these sets are examined, one finds that whereas the sets of negative discriminators produc
by the Exact Centroid Algorithm correspond very closely to the sets produced by the Mod:
ified Exact Algorithm for all three collections, the sets produced by the Modified Centroi
Algorithm are much larger in each case. Table 5 shows the number of negative discrimi
nators produced by each algorithm, as well as the number of terms in each set which arg;
identical to terms in the base case. |
Table 5 shows that for each collection, the set of negative discriminators generated
the Exact Centroid Algorithm is very similar in size to the corresponding set produced b
the Modified Exact Algorithm. Moreover, the sets themselves exhibit a high degree of over
lap. The sets of negative discriminators produced by the Modified Centroid Algorithm, of
the other hand, are much larger than the corresponding sets produced by the Modifie
Exact algorithm (the base case). The true negative discriminators (those produced by th
base case) are subsets of these sets, but were one to identify poor discriminators on the bas i
of negative discrimination value, very different sets would be produced by the Modifie -.l_

Table 4. Comparison of terms in the top a percent*

n Percent
Algorithm 10 20 30
Modified Centroid (Fig. 4) 71 77 82
Exact Centroid (Fig. 5) 95 9% 9%

*All comparisons are made to corresponding # percent of the terms pro-
duced by the Modified Exact Algorithm (Fig. 2) and are averaged over all
three collections.
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Table 5. Negative discriminators produced by each algorithm*

Collections
Algorithm ADI Medlars CACM
Modified (Exact (Fig. 2) 32 157 13
Modified Centroid (Fig. 4) 122 (32%) 398 (157%) 147 (33%)
Exact Centroid (Fig. 5) 33 (32 158 (155*) 31 (25%)

*Number of terms in common with corresponding sets produced by
Modified Exact Algorithm (Fig. 2).

Centroid Algorithm as opposed to the Modified Exact or Exact Centroid Algorithms. An
examination of the sets of negative discriminators produced by the Modified Centroid
Algorithm reveals that the large numbers of terms that become negative discriminators
under this algorithm are essentially medium frequency terms (i.e., that these terms are good
discriminators in the sets produced by the Modified Exact and Exact Centroid Algorithms).

Given (1) the cost differential between the Modified Exact and the centroid algorithms
and (2) the very similar rankings produced by the Modified Exact and the Exact Centroid
algorithms, there appears to be no reason to consider a method involving the calculation
of n* pairwise similarities (e.g., the Modified Exact Algorithm) when calculating discrimi-
nation value. Both the Modified Centroid and the Exact Centroid methods are much less
expensive, but the rankings of terms produced by the former method differ significantly
from those of the base case. Moreover, since the Modified Centroid Algorithm produces
a distorted picture of the document space in terms of the number of medium frequency
terms that are moved into the ranks of poor discriminators, this method, although some-
what less expensive than the Exact Centroid Algorithm, cannot be recommended. The
experimental evidence indicates that the Modified Exact Algorithm and the Exact Centroid
Algorithm in fact yield equivalent results and that the latter is overwhelmingly more
efficient.

5. CONCLUSION

Two algorithms for the calculation of term discrimination value, the Basic Exact Algo-
tithm (Fig. 1) and the Basic Centroid Algorithm (Fig. 3), as well as several modifications
to these algorithms, are investigated. Three feasible algorithms, the Modified Exact Algo-
rithm (Fig. 2 —the base case), the Modified Centroid Algorithm (Fig. 4), and the Exact Cen-
troid Algorithm (Fig. 5), are examined in detail. The Modified Centroid Algorithm is found
to produce a ranking of terms that varies significantly from that produced by the base case,
It also produces a distorted view of the document space by moving some medium frequency
terms into the ranks of negative discriminators. On the other hand, the results produced
by the Exact Centroid Algorithm are highly compatible with those produced by the Mod-
ified Exact Algorithm. The experimental results indicate that the rankings of the terms pro- _
duced by the Exact Centrotd Algorithm are so similar 1o those produced by the Modified
ExacrAlgorithm and the differences in execution time are of such a magnitude as to ren-_
der the use of any current non-centroid approach to the computation of discrimination

value infeasible.
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