
Using Patterns to
Help Students See

the Power of
Polymorphism

Supplement:
Using the Decorator Pattern

Eugene Wallingford
University of Northern Iowa

wallingf@cs.uni.edu

SIGCSE Technical Symposium
February 24, 2001

1 We begin with a simple Ball hierarchy.
Ball

MovableBall

BoundedBall

PinBall

CannonBall

2 Students implement a Decelerating-
MovableBall class.

Decelerating
MovableBall

Ball

MovableBall

BoundedBall

PinBall

CannonBall

3 Students implement a Decelerating-
BoundedBall class.

Decelerating
BoundedBall

Decelerating
MovableBall

Ball

MovableBall

BoundedBall

PinBall

CannonBall

4 Students recognize the duplication: the
decelerating ball classes override their
superclass in exactly the same way.

What happens if we need to have
cannonballs and pinballs that decelerate,
too?

5 The worst-case scenario (or is it?):
Ball

MovableBall

BoundedBall Decelerating
MovableBall

Decelerating
BoundedBall

PinBall

CannonBall

Decelerating
CannonBall

Decelerating
PinBall

6 How can we avoid this duplication?

BoundedBalls respond to the same
messages as MovableBalls. So, they
are substitutable for one another.

How can we use this to our advantage?

7 Create a class that holds a MovableBall
as an instance variable. Instances of the
new class respond to all the same
messages as MovableBalls.

An instance of the new class delegates
all its messages to its instance variable.
The only method that is different is
move() , which also tells its instance
variable to slow down a bit.

a DeceleratingBall

workerBall o

any message

any MovableBall

We can create DeceleratingBalls that
wrap MovableBalls and BoundedBalls:

new DeceleratingBall(
 new MovableBall(...));

new DeceleratingBall(
 new BoundedBall(...));

8 How can clients use Decelerating-
Balls in places where they expect to use
MovableBalls?

holds an instance of
MovableBall o

Ball

MovableBall

BoundedBall DeceleratingBall

PinBall

CannonBall

Now, a ball that decelerates can be used
polymorphically in place of a Movable-
Ball.

9 Later, we can consider...

• the general idea

SomeClass

SubClass1 DecoratorSubclass2
holds an instance of
SomeClass o

• implementing other decorators

holds an instance of
MovableBall o

Ball

MovableBall

BoundedBall Decelerating
Ball

PinBall

CannonBallExpanding
Ball

o holds an instance
 of MovableBall

• how one decorator can wrap another

new DeceleratingBall(
 new ExpandingBall(
 new MovableBall(...));

• how to implement the delegation
methods only once

Ball

MovableBall

BoundedBall DecoratedBall
holds an instance of
MovableBall o

DeceleratingBallExpandingBall

PinBall

CannonBall

