Using Patterns to
Help Students See
the Power of
Polymorphism

Supplement:
Using the Decorator Pattern

Eugene Wallingford
University of Northern lowa
wallingf@cs.uni.edu

SIGCSE Technical Symposium
February 24, 2001

1 We begin with a simple Bal | hierarchy.
Ball

MovableBall

/\

BoundedBall CannonBall

PinBall

2 Students implement a Decel erati ng-
Movabl eBal | class.

Ball
MovableBall
BoundedBall CannonBall Decelerating
MovableBall

PinBall

3 Students implement a Decel er ati ng-
BoundedBal | class.

Ball
MovableBall
BoundedBall CannonBall Decelerating
‘ MovableBall

Decelerating PinBall
BoundedBall

4 Students recognize the duplication: the
decelerating ball classes override their
superclass in exactly the same way.

What happens if we need to have
cannonballs and pinballs that decelerate,
too?

5 The worst-case scenario (or is it?):

Ball
MovableBall
BoundedBall CannonBall Decelerating
‘ ’\ MovableBall
Decelerating PinBall Decelerating

BoundedBall ‘ CannonBall

Decelerating
PinBall

6 How can we avoid this duplication?

BoundedBal | s respond to the same
messages as Movabl eBal | s. So, they
are substitutable for one another.

How can we use this to our advantage?

7 Create a class that holds a Movabl eBal |
as an instance variable. Instances of the
new class respond to all the same
messages as Mbvabl eBal | s.

An instance of the new class delegates
all i1ts messages to its instance variable.
The only method that is different is
move(), which also tells its instance
variable to slow down a bit.

a Decel erati ngBal |

any Movabl eBal |

any message

workerBall o

We can create Decel erati ngBal | s that
wrap Movabl eBal | s and BoundedBal | s:

new Decel erati ngBall (
new MovableBall (...));

new Decel erati ngBall (
new BoundedBal I (...));

8 How can clients use Decel erati ng-
Bal | s Iin places where they expect to use
Movabl eBal | s?

Ball

MovableBall ==

/\

BoundedBall CannonBall DeceleratingBall

‘ holds an instance of
MovableBall o—

PinBall

Now, a ball that decelerates can be used
polymorphically in place of a Movabl e-
Bal | .

9 Later, we can consider...

e the general idea

SomeClass —=

T

SubClassl Subclass?2 Decorator
holds an instance of
SomeClass 0———

e Implementing other decorators

Ball

» MovableBall ==

TN

Expanding BoundedBall CannonBall Decelerating
Ball ‘ Ball

—0 holds an instance holds an instance of
of MovableBall PinBall MovableBall o—

e how one decorator can wrap another

new Decel erati ngBal | (
new Expandi ngBal | (
new MovableBall(...));

« how to implement the delegation
methods only once

Ball

MovableBall =

T

BoundedBall CannonBall DecoratedBall

‘ holds an instance of
MovableBall e——

ExpandingBall DeceleratingBall

