
Using Patterns to
Help Students See

the Power of
Polymorphism

Supplement:
Using the Strategy Pattern

Eugene Wallingford
University of Northern Iowa

wallingf@cs.uni.edu

SIGCSE Technical Symposium
February 24, 2001

1. Students implement a method named
int startsWith(char initial)
in a simple Document class.

public class Document
{
 private String fileName;

 public Document(String fileName)
 {
 this.fileName = fileName;
 }
 ...
}

2. We discuss a typical solution.

public int startsWith(char targetChar) ...
{
 BufferedReader inputFile =
 new BufferedReader(
 new FileReader(fileName));

 String buffer = null;
 int wordCount = 0;

 buffer = inputFile.readLine();
 while(buffer != null)
 {
 StringTokenizer words =
 new StringTokenizer(buffer);
 while(words.hasMoreTokens())
 {
 String word = words.nextToken();
 if (word.charAt(0) == targetChar)
 wordCount++;
 }

 buffer = inputFile.readLine();
 }

 return wordCount;
}

3. Students implement a method named
int wordsOfLength(int initial)
in the same class.

What must they change from their
previous solution?

Only the test on the loop counter!

4. Suppose now that we want to
implement a suite of tests for lexical
analysis?

What must they change from their
previous solution?

Only the test on the loop counter!

5. Students propose ways to eliminate this
unseemly duplication of code. They
usually suggest that we subclass to
implement specific counting behaviors:

public int countWords() ...
{ ...
 while(words.hasMoreTokens())
 {
 String word = words.nextToken();
 if (passesTest(word))
 wordCount++;
 }
 ...
}

Then we can write a subclass that
implements the passesTest method:

// in class, say, WordsStartWith
public boolean passesTest(String word)
{
 return word.charAt(0) == targetChar;
}

6. We discuss why this approach (the
Template Method pattern) comes up
short in this situation.

7. Then we use startsWith(char) as an
inspiration: parameterize the behavior
that changes.

Make the test on the String
a parameter to the method.

But how can we do that?

Remember that:

• Objects are data, too.
• Objects can do things!

So make the test an object.

8. Design a solution:

• Provide a common interface for
objects that compute a boolean
function of a String.

• Write classes that implement this
interface for each kind of test.

• Pass an instance of such a class to the
Document whenever we ask it to
count its words in a particular way.

9. Implement the solution:

First, the test interface:

public interface TestFeature
{
 public boolean hasFeature(String s);
}

Then, tests as classes that implement the
interface:

public class StartsWith
 implements TestFeature
{
 private char targetChar;

 public StartsWith(char target)
 {
 targetChar = target;
 }

 public boolean hasFeature(String s)
 {
 if (s == null || s.length() == 0)
 return false;
 return s.charAt(0) == targetChar;
 }
}

Then, Document’s countWords method,
which takes a TestFeature argument:

public int countWords(TestFeature test)...
{
 BufferedReader inputFile =
 new BufferedReader(
 new FileReader(fileName));

 String buffer = null;
 int wordCount = 0;

 buffer = inputFile.readLine();
 while(buffer != null)
 {
 StringTokenizer words =
 new StringTokenizer(buffer);
 while(words.hasMoreTokens())
 {
 String word = words.nextToken();
 if (test.hasFeature(word))
 wordCount++;
 }

 buffer = inputFile.readLine();
 }

 return wordCount;
}

Finally, the specific methods in Document,
which invoke countWords:

public int startsWith(char targetChar)
{
 return countWords(
 new StartsWith(targetChar));
}

Now, we can ask a Document to count its
words in a new way by implementing a
new TestFeature class.

Regardless of the type of test on the
String, all of the tests can be used by
the countWords method because they
all implement a common interface.

