
On The Relationship between
Knowledge-based Systems Theory

and Application Programs:
Leveraging Task Specific Approaches*

Jon Sticklen and Eugene Wallingford

AI/KBS Laboratory • CPS Department • Michigan State University
East Lansing, Michigan 48824-1027 USA

Abstract . The relationship between theories of knowledge-based problem solving
and application-level programs is not well understood. The traditional view has been
that given some knowledge-based systems theory, a successful application program
built following the theory provides strong support for the theory. This viewpoint
fails largely because the link between theory and application is totally through the
human implementer of the application program. Insight for how to cope with this
problem can be obtained from the Knowledge Level Hypothesis (KLH) of Newell. But
in order for the KLH to be helpful, we must extend it to incorporate concepts of
control knowledge. After describing the theory/application linkage problem, we go
on to give an overview of the task specific approaches to knowledge-based system.
We then discuss both Newell’s KLH and an extension to it that will help in solving
the AI Theory/AI application linkage problem. We end with the recommendation that
knowledge-based systems theory could be grouped with those disciplines in which
theory verification by experimental inquiry is the norm.

0.1. Introduction
The relationship between knowledge-based systems theory and application-level

programs is not well understood. In the early “roaring 80’s,” rule-based systems were
thought to be capable of expert level problem solving in any selected domain, and the
link between theories of expert-level problem solving and applications was perceived to
be 1:1. That is, when a researcher developed a theory of problem solving P, he “tested” P
by implementing a problem solver performing some task P1 exercising P. In many cases,

* Sticklen and Wallingford gratefully acknowledge the support of DAPRA (ARPA 8673), the
NSF Center for High Speed Low Cost Polymer Composites Processing at MSU (EEC-
9108846), the McDonnell Douglas Research Laboratories, and generous equipment
support from Apple Computer.

starting with the MYCIN applications themselves [1, 2], the implemented systems were
built following a rule-based approach. The difficulty was that the theory under test when
using a rule-based approach is fundamentally that “expert-level, domain-oriented problem
solving can be captured in a rule-based approach.”

That claim – that any problem solving can be captured in a rule based approach – is

not illuminating because it only paraphrases the Turing Thesis, provided we assume that
expert level problem solving is a computable function. The Turing Thesis is that an
abstract computational engine (the Turing Machine) can compute anything that is
computable. The Turing Machine is a bridge between mathematical theory and the
realization of computational machines. Although embodying a different architecture from
Turing Machines, Post Production Machines were shown to be equivalent in computa-
tional power to Turing Machines. Finally, Post Production Machines are an abstract
computational model which can be realized in rule-based system shells. Given the Turing
Thesis, a rule-based system can in fact compute anything that is computable. Thus,

linking a particular AI theory to the performance of a rule-based implemented program has
no justification.

In the early 80’s many conference and journal papers were devoted to describing
working knowledge-based systems (see AAAI-80 for example). By the end of the decade, a
much smaller percentage of conference and journal papers appeared which described

implemented systems (see AAAI-90 for example). In fact, in some AI quarters it is now
very unfashionable to talk about implemented systems.

In this position paper, we argue that we currently risk “throwing out the baby with
the bathwater” – that knowledge-based systems is an area in which experimental testing of

theory is natural provided we take a high level view of problem solving. We will argue
that the broad task-specific architectures (TSA) approach to knowledge-based systems
supports such a high level perspective. We claim that an extension to the Knowledge
Level Hypothesis of Newell is necessary to provide the link between knowledge-based
system theory and program artifact, and we describe one such extension.

0.2. Background
The lineage of our argument lies in three areas: reflection on the first generation of
knowledge-based systems, the task specific architecture (TSA) reaction to shortcomings
in the first generation, and finally the attempt by Newell to free discussion of problem
solving systems from vocabulary of implementation, the Knowledge Level Hypothesis.

0.2.1. Experience from the First Generation

The roots of knowledge-based systems are in problems of search. For typical

problems, the use of weak problem solving methods gave rise to very high search

complexity forcing the application of heuristic knowledge to control search. By encoding
such control knowledge within the same “universal architecture” in which the weak
methods were built, the goal was to retain many of the advantages of these architectures:
modularity, uniform representation, and a single control strategy among them. The use of
unitary architectures lead to unexpected disadvantages as well (see, for example, [3]). In
particular, there were two difficulties:

• important control issues were hidden behind clever programming artifices at
the implementation-language level, and

• system builders encountered the need to organize knowledge in the system

using constructs outside the formalism provided by the architecture, such as
MYCIN’s context hierarchy [1, 2] and PROSPECTOR’s models [4].

Even if a knowledge-based system could be built at the level of a unitary architecture, the
conceptual problems of analysis and design would not vanish; problems at higher levels

of abstraction need to be addressed.

Studies in Knowledge Acquisition (KA) yielded important advances in understanding
the use of specialized vocabularies for representing knowledge-based problem solving. The
knowledge acquisition problem was described in terms of the representation mismatch

between the conceptual constructs of human experts and the implementation primitives
used to analyze and build KBSs, a representational gap that limited the ability of domain
experts to play a direct role in the construction and maintenance of systems [5]. This
perspective led to languages and architectures that provide conceptual primitives closer to
the task-level abstractions of experts “to reduce representation mismatch from the
implementation side” [6]. The task-level architectures produced from this perspective
provided greater power for knowledge acquisition because they incorporated explicit
representations of the types of knowledge expected from those specializing in particular
tasks. This enabled the construction of user interfaces for knowledge acquisition systems
that relied on simpler syntactic techniques which presupposed the existence of the

necessary conceptual structures. In the end, the high-level primitives thus employed could
be mapped onto the implementation primitives of a unitary architecture without exposing
domain experts to the vagaries inherent in programming such architectures.

Two intuitions grew from common experience with first generation approaches: (1)

Certain knowledge and control structures may be common to a particular task (say, design
or diagnosis) across different domains, and (2) the structures for different task types will
likely differ. Both retrospective analysis of existing systems and prospective design of
new systems indicated that an effective KBS will contain — either explicitly or implicitly
— a model of the problem solving process it realizes. The evolving task-specific
approach recognized the advantages of representing explicitly the conceptual organization
of domain knowledge assembled to solve a particular type of problem following a given
method. This approach denoted a paradigm shift away from use-independent, uniform
knowledge bases toward a view of KBSs as collections of diverse conceptual structures

organized for use in targeted ways. Weak methods are appropriate when no further
knowledge of a domain is available, but typically expertise in a domain affords a more
meaningful understanding of how knowledge is used to solve problems efficiently. This
new outlook signified one of the central lesson of the first generation.

0.2.2. TSA Viewpoints

Through the 1980’s there were a number of research efforts aimed at solving
difficulties met in computation-universal approaches to knowledge-based systems. The

Generic Task (GT) approach of Chandrasekaran and his colleagues has evolved as one of
these efforts. The assumption of the GT approach is that knowledge takes different forms
depending on its intended function [7-10]. Following the Generic Task view, a problem is
analyzed according to the methods associated with solving it, where each method can be
specified by the forms of knowledge and inference necessary to apply the method, and by
the subproblems that must be solved to carry it out. These sub-problems can then be
recursively decomposed in a similar fashion. The assumption of the GT approach is that
there exist a number of ubiquitous combinations of method, knowledge structure, and
inference structure — termed generic tasks — that serve as sub-problems for a variety of
complex problem-solving tasks in a variety of domains. The totality of domain

knowledge for solving a given problem is viewed as a composition of generic task
“agents” that interact based upon their functions and information needs.

Another prominent view of problem solving in knowledge-based systems was due to
Clancey. After recognizing that the control strategies implicit in the MYCIN/GUIDON

knowledge base could be expressed independent of domain terminology [11], Clancey
isolated heuristic classification as a method for performing diagnosis and other selection
tasks [12-14]. This method decomposes selection tasks into a set of high-level subtasks
that characterize the type of problem solving performed by many existing KBSs. By
moving to this more abstract level of description, Clancey and his colleagues were able to
reformulate MYCIN into NEOMYCIN, a system whose control knowledge made no
reference to the application domain and constituted an abstract model of inference
independent of implementation.

McDermott and his colleagues have formulated a view of expert problem solving,
based on the notion of role-limiting methods (RLMs), that is strongly driven by
experiences in knowledge acquisition. The RLM approach posits that a large knowledge
base can be constructed, maintained, and understood more fruitfully by organizing it
according to the various roles that different kinds of knowledge play. On this view, “each
role-limiting method defines the roles that the task-specific knowledge it requires must

play and the forms in which that knowledge can be represented” [15]. Like Chandrasekaran
and Clancey, McDermott holds that families of tasks exist for which the problem solving
method and its control knowledge can be abstracted away from the peculiarities of an task

instance. This approach, though, focuses its concern with these methods on how they
circumscribe the roles and representation of the task-specific domain knowledge on which
they operate. The goal of this research program is to identify task families having these
characteristics, to abstract their methods, and then to construct an architecture that assists
knowledge acquisition for the corresponding tasks. For the purpose of knowledge
acquisition, the RLMs represent an important class of methods because they direct the
acquisition process at a more abstract level while still providing a broad coverage of tasks
in a variety of domains.

Structured methodologies for the construction of application systems following the
TSA viewpoint have been developed mainly in Europe. Steels [16] has advocated a
framework for system analysis and development with some similarities to
Chandrasekaran’s task-oriented approach. Following Steels, one first conducts a thorough
task analysis in which the task is decomposed into subtasks based on the nature of their
inputs and outputs and on the nature of the mappings among them. Second, one

constructs a model of the domain knowledge available to perform the task and subtasks.
Finally, one applies problem solving methods geared to solving individual subtasks and
to structuring subtasks in the pursuance of higher-level tasks. The method selected for
each task depends on the kind of knowledge available to solve the task, as captured in the
domain model. This methodology differs from that espoused by Chandrasekaran and
McDermott, however, in that it allows for a representation of domain knowledge — in
the domain model — independent of the method to be selected.

Founded on similar intuitions, KADS is a methodology for the construction of
knowledge-based systems that offers an explicit software life cycle and a set of languages
for describing and creating KBS structures. This methodology rests on the assumption
that task methods share “ways of using knowledge” at a level of abstraction higher than
that of concepts in particular domains [17]. The languages in KADS support the
development of a conceptual model of the problem solving process and a design model
of the target KBS at a level of abstraction corresponding to the types of knowledge

employed. KADS proposes a four-layer representation of knowledge: (1) a domain layer of
domain-dependent concepts, relations, and structures; (2) an inference layer that describes
what inferences can be made in terms of the roles that domain-level entities play; (3) a
task layer that controls when inferences are made in terms of goal structures; and (4) a
strategy layer for goal generation and task monitoring. Like Steels’ approach, KADS
allows “task-neutral” representation of domain knowledge but then stresses the importance
of having high-level task structures through which to view problem-solving knowledge.
These structures include primitive “knowledge sources” at the inference level for solving
particular subtasks and goal structures at the task level for representing task decomposi-
tions.

0.2.3. The Knowledge Level Hypothesis

In his AAAI presidential address of 1980 [18], Newell proposed a distinct level of
analyses for problem solving systems above the symbol level. In the Knowledge Level
Hypothesis, an implementation-free framework for analyzing problem solving agents was
suggested. Since its introduction, the term “Knowledge Level” has become pervasive in
the AI literature, particularly in the Expert Systems field. In broad terms, the Knowledge
Level Hypothesis has been important in promoting a gradual shift in emphasis away from
purely representational issues and toward implementation free descriptions of problem
solving.

The Knowledge Level Hypothesis (KLH): There exists a distinct
computer systems level, lying immediately above the symbol level, which is
characterized by knowledge as the medium and with the principle of rationality as
the law of behavior.

The most important parts of Newell's hypothesis are as follows:

• The entire information processing system is identified at the Knowledge
Level as the “agent.” By identifying the agent as the total system at the
Knowledge Level, Newell implicitly acknowledges the view that at the
Knowledge Level the separability of problem solving engines and the bodies
of domain knowledge they utilize is illusory. Rather, in terms that can be
useful at the Knowledge Level, problem solving and domain knowledge are
intimately entangled, and the agent must be analyzed on this basis. This
opens the issue of the appropriate granularity at which to describe

Knowledge Level agents, a discussion to which we will return.

• Knowledge has a generative flavor and cannot be captured in a static data
structure; i.e., cannot be expressed at the symbol level. The emphasis that
knowledge itself is unbounded and the resultant importance of the generative

nature of Knowledge Level constructs is an outgrowth of Newell’s goal of
shifting attention away from representation issues: issues that are properly
dealt with at the symbol level.

• The attribution of knowledge to an agent is via a process of simulation by

self; i.e., a simulation with the “self” being the agent and an assumption by
“self” of the goals and symbol-level structures of the other to produce the
same actions as the other.

• The central role of self simulation in the attribution of knowledge to an

agent is both a source of substantial power in the Knowledge Level
Hypothesis, as well as a source of considerable weakness. The power comes
via the identification of how we may know that an agent has certain
knowledge even though we are unable to look inside that agent. The

weakness comes because by using “self” as the simulator, we cannot produce
reliable predictions for future behavior.

The incompleteness of the Knowledge Level Hypothesis is shown by its lack of
guidance for making predictive statements for some problem solver. Suppose we
subscribe to the hypothesis of the Knowledge Level and, further, also subscribe to the

knowledge-level assertion of Clancey that classification problem solving involves the
trivalent processes of data abstraction, heuristic match, and refinement to a problem of
“...characterization of a particular case into one of a set of pre-enumerated possibilities”
[13]. Further suppose that the target problem can be characterized as having a set of
pre-enumerated answers. Utilizing the Knowledge Level, we assume that the processes of
data abstraction, heuristic match, and refinement should exist in the Knowledge Level
solution somewhere, but that is all we know. This argument that the KL as described by
Newell is incomplete is more fully developed in [19].

Dietterich points out the same problem with using the Knowledge Level. In a clever
example of a “perfect chess player” [20], Dietterich shows that the Knowledge Level
provides a way of discussing what the chess playing agent knows, i.e., the knowledge the
player has; but that the Knowledge Level gives us no clue about how to start building a
chess playing agent. Indeed, although we can discuss the knowledge the agent has for any
particular move, implementing such a “perfect chess player” would be infeasible.

Although Dietterich is chiefly concerned with the “how to build it” issue, the “what
predictions would I make” issue is inherent in his example.

The major thrust of Newell’s arguments is to move away from implementation level
details toward a deeper understanding of problem solving. We argue that the Knowledge

Level as it stands is incomplete due to its lack of a predictive component. The question is
how can we prescribe an overall problem solving scheme to make predictive statements,
and at the same time avoid implementation details? The short answer is that the way of
prescribing the problem solving must be stated in terms appropriate to the problem
solving activity itself.

0.2.4. Background Synthesis

Results of first generation, unitary problem solving approaches led some researchers
(Breuker & Wielinga, Chandrasekaran, McDermott, Steels, ...) to develop representational
approaches which were more direct embodiments of the domain knowledge that they
sought to embed in their problem solvers. At the highest level, each developed domain
and control vocabularies specialized for some specified set of problem solving methods. In
addition to very practical concerns such as knowledge acquisition, this “task specific
architectures” approach emphasized the need to develop families of implementation
languages tailored for specific problem solving situations and available knowledge

sources. Along a seemingly different track, Newell proposed the separation of analysis of
knowledge systems from implementation concerns altogether.

In fact, these two thrusts have a common denominator: the desire to analyze problem
solving in “natural” terms. For Newell, this term “natural” first meant pure knowledge-
level terms,with no symbols to be used at all. For the TSA schools, “natural” meant in a

representation and control vocabulary tailored for the task being modeled.

0.3. The Knowledge Level Architecture
In [19],Sticklen proposed an extension to the Knowledge Level Hypothesis (KLH) of
Newell. This extension, the Knowledge Level Architecture Hypothesis (KLAH), is in fact
a generalization of the TSA viewpoint.

Knowledge Level Architecture Hypothesis (KLAH): If a problem
solving agent may be decomposed into the cooperative efforts of a number of
sub-agents, the larger agent can be understood at the Knowledge Level by giving
a Knowledge Level description of the sub-agents and specifying the architecture
the composition follows.

Each composed agent, taken as a complete entity, can be analyzed in accord with
Newell’s view; each has components of goals, a body of knowledge, and primitive
transducers, and each obeys the principle of rationality.

Overall
Agent A

channel ij

channel jk

Sub-Agent i

Sub-Agent j

Sub-Agent k

request r
∈∈∈∈ [r 1 ,r 2,...,r n]

Each primitive agent also has
goals, a body of knowledge, and
primitive transducers that are shared
with the composed agent. Here, too,
the primitive agents obey the law of

rationality. The only difference so
far is that more primitive agents,
which together composed a
higher-level agent, and share
primitive transducers. And further
that these transducers appear to
belong to the agent from the agent’s
perspective.

The manner in which the
primitive agents are allowed to interact with one another is restricted by an imposed
Knowledge Level Architecture. This architecture is defined by two ingredients.
First, the Knowledge Level Architecture must fix the paths of communication along
which the sub-agents agents may interact. This is a way of setting the structural
relationship between the sub-agents. Put another way, decomposing the agent to

sub-agents and fixing the communication paths (taking both steps together) is a way of
organizing the knowledge of the agent.

Second, the Knowledge Level Architecture must fix the message protocols which the
sub-agents follow to communicate with one another. Assuming that sub-agents do not
take independent action but rather act only when requested to, fixing the content of

communications between the sub-agents is a way of expressing the goals of the
sub-agents. The elements of the Knowledge Level Architecture are shown graphically
below.

The hypothesis of a Knowledge Level Architecture should be taken as an adjunct to

the Knowledge Level hypothesis itself; clearly if no such thing as a Knowledge Level
exists, it does not have an architecture. If, however, there is a distinct Knowledge Level of
the type described by Newell, then whenever the agent can be decomposed to sub-agents
the Knowledge Level Architecture Hypothesis provides a framework for interpreting the
actions of a composite agent by specifying the interaction of an ensemble of sub-agents.

Newell argues that the usefulness of the Knowledge Level lies in predicting and
understanding behavior without having an operational model of the processing actually
being done by the agent. The utility is basically to enable an implementation-free
description of a problem solving agent. The Knowledge Level Architecture allows the
same sort of implementation-free description while demanding an account of how the
agent functions at the Knowledge Level. The central issue here is what we mean by
“implementation-free.” Newell’s original notion of the Knowledge Level limits
description of how a problem solving agent functions by disallowing any discussion of
problem solving control. Our extension, on the other hand, allows discussion of such

questions, but only in the vocabulary of knowledge organization and control.

The vocabulary of the KLA (subagents, communication paths, communication
protocols) is used to analyze a given problem solver. To the extent the analysis is
successful, a particular Knowledge Level architecture will be produced, and this will be

tantamount to producing a task specific architecture for performing the stated task.

It is important to distinguish three levels of description for knowledge systems:

• The individual problem solver: The functioning MYCIN system is
an example at this level. The vocabulary used for discussion here is the set
of terms necessary in the domain of the problem solver; e.g., for MYCIN,
the terms would include strep infection, patient fever, etc.

• The problem solving type: MYCIN performs a type of classification
problem solving. But the utility of classification is much more general. The
proper epistemic terms to use at this level are the primitives for classifica-
tion itself; i.e., for any system that is undertaking classification. For
example, all classification systems have categories around which final

answers are framed. Thus a necessary primitive for properly representing
classification must be the classificatory category.

• The Knowledge Level Architecture: At this level, for agents which
can be decomposed to an ensemble of cooperating sub-agents, we set the
terms which will be used to describe the problem solving types expressed at

the next lower level. These terms are in three categories: the principles for
sub-agent decomposition, the organizational principles of the sub-agents
(i.e., the communication channels), and the repertoire of messages which the
sub-agents will understand. Note that the KLA sets the vocabulary for the
description of control in the general problem solving types at the next
lower level (the problem solving type level.

0.4. Link Between KBS Theory and KBS Applica-
tion
There are two broad traditions for theory testing: mathematical proof and experimental
testing. Some segments of AI tend more towards the mathematical-proof variant on
theory testing, for example the logic school. But for Knowledge-Based Systems, the TSA

viewpoint in general, and the KLAH provide a footing for the development of a
experimental paradigm for theory testing.

Scientific theories must accomplish two goals. First, theory must account for known
phenomena. Second, theory must make verifiable predictions about as yet unobserved

phenomena. These criteria for scientific theory have been suggested by many philosophers
of science, and have broad acceptance within the scientific community itself. For
example, a widely used definition of science due to Conant is

Science is an interconnected series of concepts and conceptual schemes that have

developed as a results of experimentation and observation and are fruitful of
further experimentation and observation. [21, page 25]

The “fruitful” part of Conant’s definition is aimed clearly at prediction. One way for an AI
theory to be predictive is for it to have a prescriptive component, where our sense of

“prescription” is that the theory offers guidance in the construction of problem solving
systems in the domain of the theory.

Suppose that we have an intelligent agent A for which we hold a theory T.

Following the above discussion, T should have two characteristics.

• First, given a known behavior B of A, T should explain why A took the

action B as opposed to other possible actions. For example following the
observation of an agent’s behavior, the Knowledge Level Hypothesis allows

us to explain that behavior by ascribing to the agent compatible goals and
knowledge, i.e., goals and knowledge that lead to the observed behavior.

• Second, T must also allow us to make predictions about future problem

solving behavior B' of A.

The first point above is obvious; the second requires more discussion. In science,

when we say “Theory T predicts that B will be observed under conditions...,” then an

attempt is usually made to verify the prediction as a test of the theory. Of course, this is
precisely why the second, predictive element of theory is important. Without the
requirement that theory should predict phenomena as yet unobserved, we run the risk of
simply fitting theory to known observations.

Centering now on the need to make predictions about future behavior, the next task
becomes indicating how such predictions can be made. Let us look to a well established
science for inspiration: physics. For some theories of physical phenomena, prediction
becomes a matter of working out a closed form solution to some mathematical
expression. However, not all situations which physical theory address have closed form
solutions. Consider, for example, the astrophysical theory of stellar structure. There are
five relatively simple equations of state which describe the theory of various forces in
action inside a star. There is in general no closed form solution to these equations. Thus
in order to make useful predictions from the current state of their theory, astrophysicists
use the equations of state as the basis for a time based numerical simulation. The results

of this simulation are predictions of the physical behavior of stars over time. Note that
there are two bodies of knowledge which the astrophysicist utilizes to make his
predictions: knowledge of the physical theory as expressed mathematically, and knowledge
of how to perform a numerical simulation based on such equations. The two types of
knowledge are forged into a simulation model of a star that is then capable of prediction.

No one would confuse a simulation model of a star with the actual star — it would
be hard to get enough energy out a simulation model to energize a planetary system! But
suppose that our theory concerns itself with problem solving agents, and the phenomena
we want to make predictions about is the behavior of a problem solving agent. If we

construct a simulation model S of some problem solving agent A which is based on a

theory T , and this model can successfully predict behavior B' of A, then in fact our

simulation model S is itself a (constructed) problem solving agent, at least if one accepts

the Turing Test as a basis for calling something a problem solving agent. In the realm of
information systems, a simulator of a problem solving agent is itself a problem solving
agent.

Which kind of prediction (direct or simulation) do/will problem solving theories
support? The “do” part is straightforward — currently there do not exist theories of
problem solving that make direct detailed predictions about future behavior. But we
cannot say that there will never be such a theory, and hence a definitive answer cannot be

offered for the “will” part of the question. There are a number of research programs
currently under way that will produce predictions about problem solving behavior (for
example, the SOAR project) but all are based on a simulation of a problem solving
agent.

If theory of problem solving is simulation-based, then another way of viewing it is

that it is a statement of how to construct an agent to undertake the problem solving.
This is a result of a strong difference between theory-based simulations that are predictive
in the physical sciences, and theory-based simulations that are predictive for problem
solving phenomena.

And this brings us to the bottom line for this section. Although there is not
conclusive proof that we cannot construct problem solving theory capable of “direct
prediction” for problem solving, current experience leads us to believe that such theory
would be at best very difficult to enunciate.

Typically, we associate a prescriptive set of directions for building an artifact with an
engineering discipline, not with a science. In the case of theories of problem solving, we
have argued that, in order for the theory to have the important criterion of the ability to
predict phenomena, the theory will be a statement of how to build a simulator for
problem solving. But that simulator itself will be a problem solving agent. Hence, in
addition to being a scientific statement, the theory is also a prescriptive statement for
building such agents. This argument sheds light on the confusion that is often seen in
arguments about whether knowledge-based systems is an engineering discipline or a
science: a good KBS theory is both.

0.5. Conclusion
In this report, we have described an extension to Newell’s Knowledge Level Hypothesis
(KLH) called the Knowledge Level Architecture Hypothesis (KLAH). First described in
[19], the KLAH is best understood as a generalization of the Task Specific Architectures
view that has been gaining adherents over the last decade. A similar intuition was recently
used by Van de Velde (of Steels group) to offer a different extension of Newell’s
Knowledge Level. While we have proposed a decomposition of the monolithic agent of

Newell to the cooperative efforts of a number of subagents connected together by our
KLA, Van de Velde decomposed the “principle of rationality” of Newell into a general
part (similar to Newell’s original) and to a second portion which would contain the
control goals of particular tasks [22]. Even more recently, the SOAR community under
Newell’s leadership has also developed a systems description level intermediate between
the symbol level and the knowledge level [23], which addresses similar concerns to our
KLA level of description.

We have described how the KLAH provides a framework in which particular TSAs
may be viewed as Knowledge Level constructs. A particular TSA can then be used both as

a prescription for building actual systems and as a statement of a problem solving theory.
Once the TSA-blueprinted system is built, it may be used to predict future behavior —
the TSA statement of theory is susceptible to experimental testing.

We started this report with a discussion of the shortcomings of the unitary problem
solving techniques of the first generation of knowledge-based systems. Those shortcom-

ings were typically traced to the representation of problem solving being carried out at too
low a level, typically in a computation-universal framework. The bottom line of our
argument for TSAs and for the KLAH framework for understanding TSAs is that by
constraining what can be done in a given problem solver to targeted tasks, and doing this
through limitations in representational primitives and control constructs, it is possible to
forge a link between problem solving theory and problem solving application. The central
facet of our argument is the duality for problem solving systems between a blueprint to
build the system and a statement of the theory backing the problem solver.

This report owes much to the intellectual ferment and excitement of the Laboratory
for AI Research at Ohio State University, and to all associated with that laboratory. In
addition, recent discussions between the first author and Luc Steels have been helpful in
settling these ideas. Comments of the editors, reviewers, and discussants of the original
statement of the KLAH, which appeared in JETAI , were extremely useful in helping to
clarify our proposal.

References
1 . Buchanan, B. and E.H. Shortliffe, Rule-Based Expert Systems: The MYCIN

Experiments of the Stanford Heuristic Programming Project. 1984, Addison-Wesley.

2 . Shortliffe, E.H., Computer Based Medical Consultations: MYCIN. 1976, Elsevier
North Holland Inc.

3 . Chandrasekaran, B. Towards a Functional Architecture for Intelligence Based on
Generic Information Processing Tasks. in IJCAI-87. 1987. Milan.

4 . Duda, R.O. and J. Gaschnig, Model Design in the Prospector Consultant System for
Mineral Exploration, in Expert Systems in the Micro-Electronic Age, D. Michie,
Editor. 1979, Edinburgh University Press.

5 . Bylander, T. and B. Chandrasekaran, Generic Tasks for Knowledge-Based Reasoning:
The ‘Right’ Level of Abstraction for Knowledge Acquisition. Int. J. Man-Machine
Studies, 1987. 26(2): p. 231-243.

6 . Gruber, T. and P. Cohen, Design for Acquisition: Principles of Knowledge-System
Design to Facilitate Knowledge Acquisition. International Journal of Man-Machine
Studies, 1987. 26: p. 143-159.

7 . Chandrasekaran, B. Decomposition of Domain Knowledge into Knowledge Sources:
The MDX Approach. in Proc. 4th Nat. Conf. Canadian Society for Computational
Studies of Intelligence. 1982.

8 . Chandrasekaran, B., Towards a Taxonomy of Problem-Solving Types. AI Magazine,
1983. 4(1): p. 9-17.

9 . Chandrasekaran, B., Generic Tasks in Knowledge-Based Reasoning: High-Level
Building Blocks for Expert System Design. IEEE Expert, 1986. p. 23-30.

10. Chandrasekaran, B., J.W. Smith, and J. Sticklen, Deep Models and their Relation to
Diagnosis, in Artificial Intelligence in Medicine, Furukawa, Editor. 1989, Science
Publishers: Amsterdam, Netherlands.

11. Clancey, W.J. NEOMYCIN: Reconfiguring a Rule-Based Expert System for
Application To Teaching. in Proceedings of IJCAI 7. 1981.

12. Clancey, W.J. Advantages of Abstract Control Knowledge in Expert System Design.
in Proceedings of AAAI. 1983.

13. Clancey, W.J. Classification Problem Solving. in Proceedings of the AAAI. 1984.

14. Clancey, W.J., Representing Control Knowledge as Abstract Tasks and Metarules.
1985, Stanford University: Palo Alto.

15. McDermott, J., Preliminary Steps Toward a Taxonomy of Problem-Solving Methods,
in Automating Knowledge Acquisitionfor Expert Systems, S. Marcus, Editor. 1988,
Kluver Academic Publishers: Boston. p. 225-255.

16. Steels, L., The Components of Expertise. AI Magazine, 1990. Summer, 1990.

17. Breuker, J. and B. Wielinga, Models of Expertise in Knowledge Acquisition, in
Topics in Epxert Systems Design: Methodologies and Tools, G. Guida and C. Tasso,
Editor. 1989, North Holland Publishing Company: Amsterdam.

18. Newell, A., The Knowledge Level. AI Magazine, 1982. Summer: p. 1-19.

19. Sticklen, J., Problem Solving Architectures at the Knowledge Level. Journal of
Experimental and Theoretical Artificial Intelligence, 1989. 1: p. 1-52.

20. Dietterich, T.G., Learning at the Knowledge Level. Machine Learning, 1986. 1: p.
287-316.

21. Conant, J.B., Science and Common Sense. 1951, Yale University Press.

22. Van de Velde, W. Tractable Rationality at the Knowledge Level. in Artificial
Intelligence and Simulation of Behaviour (AISB). 1991. Leeds, GB: Springer-Verlag.

23. Newell, A., et al., Formulating the problem space computational model, in Carnegie-
Mellon Computer Science: A 25-year Commemorative Reading, R.F. Rashid, Editor.
1991, ACM-Press, Addison-Wesley.

