
Functional Programming Patterns
and Their Role in Instruction

Eugene Wallingford

Department of Computer Science
University of Northern Iowa

Cedar Falls, Iowa 50614-0507
wallingf@cs.uni.edu

Abstract

Functional programming is a powerful style in which to write programs.
However, students and faculty alike often have a hard time appreciating its
beauty and learning to exploit its power. These difficulties arise in part because
the functional style requires programmers to think at a higher level of
abstraction, and in part because functional programs differ in fundamental ways
from programs written in more common styles. A pattern language of functional
programs can provide programmers with concrete guidance for writing
functional programs and at the same time offer a deeper appreciation of
functional style. Used effectively, such pattern languages will help functional
programming educators reach a broader audience of faculty, students, and
professionals. The result will be better programmers and better programs.

1 Introduction

Functional programming is a powerful style in which to write programs. Yet many
students never fully appreciate the style, because they find it so foreign to their other
programming experience. After programming in an imperative style, where state and
state changes are central, the techniques and idioms of the functional style can feel
restrictive or uncomfortable. The vocabulary of the style does not mesh with how they
think about problems and programs. Further, many of the key ideas in functional
programming involve abstractions beyond what other styles allow, and often students do
not fully understand the reasons behind them or trade-offs entailed by their use.

Complicating matters, many university faculty do not have strong backgrounds in
functional programming and so have a difficult time helping students to appreciate its
beauty and power. Often these faculty have studied functional programming only for a
university course or two as undergraduates themselves, yet find themselves teaching a
course in which functional programming is a topic. Without experience working in the
style over an extended period of time or on programs larger than toy assignments, they
have never had the opportunity to develop a sense of what func-tional programming is
like. Such faculty would like to convey the beauty of functional programming to their
students but often find themselves teaching only the surface features of the style.

Surface features, though, do not provide enough insight for students or faculty to learn to
read, let alone to write, programs in a functional style. Equipped only with the

vocabulary of a programming language and the basic concepts of a programming style,
novices have difficulty recognizing higher-level structures in the programs they read.
They face a similar problem when trying to write programs, as they tend to work at a low
level of abstraction. What an expert programmer sees can seem incomprehensible to
them. If the expert’s knowledge were more readily available to novices, in a form that
they could use to read and write programs, then perhaps they could develop their own
expertise more readily.

1.1 Patterns as an Approach

Over the last decade, many software professionals have begun to explore the use of
patterns as a means for recording and sharing expert knowledge for building software. In
its simplest form, a pattern is a three-part rule that expresses a relation among
• a programming context,
• the set of competing concerns, or forces, that occurs repeatedly in that context,
• and a stereotypical software configuration that resolves these forces in a favorable

way.
The context denotes the current state of a system, in particular the components already
present and perhaps global constraints on the result. The set of forces constitutes a
problem to be solved, and the stereotypical configuration is the solution that expert
programmers use to solve it. In practice, patterns usually also explain why this solution
suffices and describe how to implement the solution in code.

The value of a pattern lies largely in its ability to explain. Writing a pattern requires the
author to state explicitly the context in which a technique applies and to state explicitly
the design concerns and trade-offs involved in implementing a solution. These elements
of a pattern provide significant benefits to the reader, who can not only study the
technique that defines a solution but also explore when and how to use it. The author of
a pattern can also benefit in a similar way, as the pattern form encourages a level of
explicitness not always present in other written forms.

A pattern language is a collection of patterns that can be used together to create a larger
program. In a pattern language, the context of each pattern refers to other patterns in the
language. As such, the language guides the user through the process of building a
complete solution to a more complex problem. This knowledge is prescriptive in that it
specifies a partial order on the use of the patterns, which is helpful to novice
programmers as they begin to implement more complex programs. But the patterns also
contain information about context and design trade-offs, which enables the user to know
when and how to make exceptions. In a similar way, a pattern language can also help its
user to understand existing programs by describing the higher-level structures typically
present in design and code.

Software patterns began as an industry phenomenon, an attempt to document bits of
working knowledge that go beyond what developers learned in their academic study.
They have become a standard educational device in industry. When computer science
departments began to teach object-oriented (OO) design and programming in the 1990s,
many academics used standard industry texts such as Design Patterns [6] as an important
part of their preparation. Based in part on such experiences, faculty have incorporated
patterns into their OO programming courses and pedagogy [e.g., 14, 15].

Given their utility in industry and in OO instruction, patterns offer a promising approach
to help students and faculty learn to write functional programs. Such patterns will
document the stereotypical techniques and program structures used by functional
programmers, and pattern languages will document the process of using functional
programming patterns in the construction of larger programs—ideally, complete
programs that solve problems of real interest.

1.2 About This Paper

This paper recounts some of my work attempting to document patterns of functional
programs and to use these small pattern languages to teach elements of functional
programming. The next section describes one such pattern language, Roundabout, which
documents patterns of recursive programs. Section 3 presents some of the ways I use
Roundabout in my course and offers some qualitative evaluation of the results. Section
4 discusses related work involving patterns and other efforts to capture and teach the
functional style. Finally, I close by suggesting future work on pattern languages of
functional programs.

Note that all of my experiences with functional programming patterns to date involve
teaching Scheme and Common Lisp, and the patterns described here reflect a Scheme
programming style. The details of many of these patterns are language-specific, but the
idea of functional programming patterns and their use in teaching extends beyond any
particular language.

2 Functional Programming Patterns

I have written two small pattern languages for use in courses. Roundabout, a pattern
language for recursive programs over inductively-defined types, is the more complete and
more course-tested of the two. It comprises seven patterns often present in such recursive
programs.

Accumulator

Program
Derivation

Mutual
Recursion

Structural
Recursion

Interface
Procedure

Syntax
Procedure

Local
Procedure

Fig. 1: The patterns of Roundabout

Structural Recursion is the entry point
to the language, specifying that the
shape of a procedure should match the
shape of the inductive type definition
that it processes. Patterns in the
second layer expand on the first and
document primary techniques used to
structure recursive programs, in
particular the creation of particular
kinds of helper procedures. Finally,
patterns in the third layer describe how
to improve the programs generated by
the first five in the face of other forces
such as run-time efficiency or name-
space clutter.

The patterns of Roundabout collaborate to create complete solutions to problems
involving inductively-defined types. One way they do this is through the contexts of the

patterns, which record the relationships between patterns explicitly. Figure 1 shows a
map of these relationships. Each link indicates that the first pattern appears in the
context of the second. This means that, after applying the first pattern, you may want to
apply the second pattern to address some forces in the solution unresolved by the first.

2.1 The Anatomy of a Pattern

Each pattern in Roundabout consists of six sections. This section considers each, using
the Accumulator pattern as an example. The Mutual Recursion pattern, given in
Appendix 1, provides a second example.

Context: a statement of the patterns and global factors that must be present before this
pattern is relevant. This is a precondition on the pattern’s applicability.

• Accumulator presumes that the program uses Structural Recursion. Because Mutual
Recursion introduces a second procedure, which is central to Accumulator’s intent,
its context mentions Mutual Recursion specifically.

Problem: a concise statement of the specific issue addressed by this pattern. The
problem solved by a pattern embodies its intent.

• Accumulator addresses a problem that sometimes occurs when multiple procedures
collaborate: the natural flow of a recursive program can lead to unnecessarily
inefficient code.

Forces: a discussion of the competing constraints that face programmer trying to solve
the problem. This discussion motivates the pattern’s use by showing how other
solutions do not adequately solve the problem. Often, this section introduces a sample
problem to make the discussion of the pattern more concrete.

• The text of the Accumulator pattern uses the example of procedure that flattens
nested lists. A straightforward use of Mutual Recursion results in a helper procedure
that operates on the nested lists, but the primary procedure must append the helper’s
results onto the results of the recursive call. This solution is O(n2) in the size of the
data. This behavior is unacceptable for all but the simplest inputs. The naturalness
and readability of the two-procedure solution conflicts with the inefficiency of the
resulting code.

Solution: a description of the pattern’s structure in a program, along with a description
of how to implement it. If this pattern has a complex structure, the solution may
describe the components of the structure and their implementation as well.

• The programmer can resolve the competing forces in the flattening procedure by
introducing an accumulator variable to hold the result of the computation as it is
built. Both of the mutually-recursive procedures receive the accumulator as an
argument, so each can add to the solution when-ever it desires while controlling the
flow of the computation independently. Implementing an accumulator requires that
the top-level procedure become an Interface Procedure that passes the initial value of
the accumulator variable to a helper procedure that does the computation.

Problem Resolved: a demonstration of how the pattern’s structure solves the problem
and resolves many or all of the forces at play. Sometimes, this section explicitly
discusses the forces and how the pattern addresses them; other times, it only shows the
pattern implemented for the sample problem introduced in the forces section.

• This section of Accumulator shows that it solves the flattening problem in a way
that uses mutual recursion and computes its answer in O(n) time. The pattern’s text
might be improved by adding a more explicit discussion of how the pattern resolves
the forces.

Resulting Context: a statement of the patterns that may be used to address any
constraints that affect the resulting program structure. These constraints may be forces
left unresolved by this pattern or new forces introduced by implementing the structure.

• Finally, an Accumulator may leave global forces out of balance. Due to its reliance
on multiple procedures that call each other, the program may be inefficient. The
Program Derivation pattern may be able to retain most of the benefits of the design
while achieving better performance. Also, the extra procedure may clutter the name
space of the system or otherwise make code management more difficult, which can
be resolved in part by use of the Local Procedure pattern.

The pattern form describes both a structure and how and when to build it. As a pattern
writer, I have had to pay careful attention to why I use a given structure in a particular
program, why I choose to implement it at that point in the process, and why it is better
than some other in that situation. These answers can help my students, who are new to
functional programming, to learn the vocabulary of the style and to think critically about
the writing of programs.

2.2 Writing a Program with Roundabout

Taken as a whole, Roundabout can guide a programmer in the creation of a complete
solution to a given problem. Sometimes, the resulting program will be different from
any program a student would have built on his or her own.

Consider the task of writing the procedure replace, which replaces all occurrences of one
symbol with another in an s-list. (See Appendix 1 for a more detailed coverage of the
early part of this example.) Because the s-list is defined inductively, the pattern
Structural Recursion applies. This pattern says to build a procedure with one arm for
each type of s-list. This results in a procedure of this form:

(define replace
 (lambda (new old slist)
 (if (null? slist)
 '()
 ; handle compound case)))

The case for handling a non-empty s-list involves two choices of its own: Is the first
item in the list a symbol? And, if so, is it the symbol to be replaced? This requires a
nested if expression of its own:

(if (symbol? (car slist))
 ; handle two possible cases
 ; replace in both parts)

But the s-list data type consists of two mutually inductive data definitions, one for s-
lists and one for symbol expressions. The resulting context of the Structural Recursion
pattern tells us that such data types should be processed using the specialized Mutual
Recursion pattern. This pattern applies Structural Recursion to both data definitions,
with the resulting procedures making calls to one another in the appropriate locations.

(define replace
 (lambda (new old slist)
 (if (null? slist)
 '()
 (cons (replace-symbol-expr new old (car slist))
 (replace new old (cdr slist))))))

(define replace-symbol-expr
 (lambda (new old sym-expr)
 (if (symbol? sym-expr)
 (if (eq? sym-expr old)
 new
 sym-expr)
 (replace new old sym-expr))))

The resulting procedures are truer to the data definition than a one-procedure solution
might be, and they do not repeat code in the way a naive application of Structural
Recursion would have.

The use of mutually recursive procedures interjects new forces into the problem. For
inputs with deeply nested lists, many of the mutually recursive calls will result in
immediate calls back to the calling procedure. If this sort of inefficiency is unacceptable,
then Roundabout suggests the Program Derivation pattern as a potential technique for
resolving the forces. Program derivation is a technique for using functional
programming’s substitution model to generate code.

Applied to the two procedures above, this technique gives the following solution:

(define replace
 (lambda (new old slist)
 (if (null? slist)
 '()
 (cons (if (symbol? (car slist))
 (if (eq? (car slist) old)
 new
 (car slist))
 (replace new old (car slist)))
 (replace new old (cdr slist))))))

This result can be quite surprising to novices. The final solution consists of a single
procedure, which is often their goal, yet it is unlike any procedure that they would have

written from scratch themselves. They see how to use Scheme’s tools to create a
solution with little or no repeated code, much as an expert programmer might. Students
are gratified that they can approach such expert results by using an almost mechanical
technique, which further motivates their use of the pattern language.

The pattern language form makes explicit the relationships among the structures that
compose a whole. These explicit connections guide students in the process of
developing a program while leaving room for them to make trade-offs in the application
of the patterns. Through experience, the programmer will internalize the pattern language
and begin to develop instincts for the programming style.

3 Teaching with Patterns

I have used Roundabout in three different courses. I originally wrote the language as I
learned how to teach functional programming as a major component of my department’s
Programming Languages and Paradigms course, and it now serves as the basis for a
three-week unit on recursive programming. Later, I made Roundabout supplemental
reading for a 1-credit Lisp programming lab in our Artificial Intelligence course. Finally,
I have used some of Roundabout’s patterns when teaching a C++-based Data Structures
course. Roundabout affects my teaching in several ways.

Lecture organization. Roundabout strongly affects how I organize course sessions. The
pattern form itself present ideas in a good way for to students. A pattern begins with a
problem, explores the forces that drive the solution, and then describes a solution that
balances the forces. The discussion of the forces can explore other candidate solutions
and why they are not good enough, which helps motivate the technique that ultimately
solves the problem. Presentation of the solution can also explore why the solution
works and what new forces it introduces. This discussion helps students discern when to
use a technique and when to look for a better solution.

Another approach gives students a “before and after” picture: show them a program that
solves a program in a naive way, perhaps using the techniques that they know at that
point, and then show a refactored solution that employs a new pattern. This technique
works better for a larger problem and a larger pattern, as that yields a starker contrast
between solutions. This approach can motivate students to study the pattern carefully,
once they have seen the kind of difference they can make.

Using a pattern language can also help the instructor design of several sessions that deal
with the patterns working together. The map of Roundabout given in Figure 1 gives a
natural partial order on the presentation of topics, and the contexts and resulting contexts
of the patterns offer connective tissue for the transitions between patterns.

Assignment creation . Using Roundabout affects how I select homework and exam
problems by encouraging the use of problems that (1) explore each pattern, (2) cause the
student to choose among techniques based on the forces in the problem, and (3) cause the
student to apply several patterns to create of a single solution. While these seem to be
natural goals for good assignments, and textbook authors often cover all three, I find that
the pattern language helps me to design assignments with more complete coverage.

Design evaluation. A pattern language can serve as a useful tool in the task of evaluating
student designs, for the purposes of giving assistance, feedback, and grades [13]. The
patterns in the language constitute a vocabulary for describing designs, and the language
gives rules for generating good designs. And, most important from the perspective of
evaluation, the pattern contexts give an explicit standard with which to evaluate designs.
By specifying more completely when each pattern applies and what forces it addresses,
the pattern language guides students in applying the techniques they learn, and it gives
instructors a concrete reference for critiquing student work.

3.1 Student Perceptions

I can offer some qualitative evaluation of the effects that teaching with this pattern
language has had on my students’ performance and perceptions. I have taught our
programming languages course five times using Roundabout. At the end of each
semester, students evaluate the course in small groups during the last session of the
semester, and each small group then reports its results to the class as a whole. These
public evaluations typically list ‘recursive programming’ as one of the three most
valuable items learned during the semester. This seems significant because by this time
students have studied and used recursion in at least two prior courses. Their new
confidence could result simply from growing experience, but students report that
Roundabout has helped them learn how to use recursion more comfortably.

Students also complete an anonymous course evaluation, on which they may comment
on any part of the course. Most students do not comment but, when they do,
approximately one-fourth mention Roundabout, always favorably.

Student scores on recursive programming exercises have improved by an average of 1.5
points out of 20 since I began to use this pattern language in class. This may only be a
result of the fact that I now do a better job teaching recursive programming than I did
before, but that is one of the central reasons to use the pattern form: it encouraged and
sometimes forced me to understand and explain why and when to use the techniques that
I was teaching.

This improvement seems to occur whether I discuss the patterns explicitly in class or use
them only as a way to structure the content of the course. The one semester that I did
not see such an improvement was last spring, when I stated directly that use of the
patterns was “optional”: the patterns demonstrate good technique, but students were
responsible only for their final solutions and not for their technique. I was surprised to
find that many students chose not to use them, instead relying on their past experience
with recursion. On average, student scores on recursive programming exercises fell back
near previous levels. This indicates that students require stronger encouragement to try
the techniques in the first place.

However, this encouragement must focus on the content of the patterns and not the
patterns qua patterns. One of the possible drawbacks of using a pattern language to teach
is that instructors or students focus on pattern names and “learning the patterns”, and
thus lose sight of the fact that patterns simply document good style and technique for
solving a class of problems. Learning how to build good solutions is the goal, not
memorizing patterns.

4 Related Work

We can view the use of pattern languages in the teaching of functional programming in
relationship to work in the functional programming community, the patterns community,
and in the broader computer science education community.

4.1 Functional Programming Community

Several groups are doing work to help us improve how we teach functional
programming. Among them are at least two in a similar spirit as my work with patterns.
One approach, exemplified in the introductory text How to Design Programs [4], focuses
on the design process that programmers use to create programs. Another approach
focuses on how programmers evolve their programs through refactoring [10].

Pattern languages complement these approaches by defining both a vocabulary and a
process. Individual patterns can serve as components in a program being built using
another design process, because they specify program structures and when and how to
build them. The pattern language can be used to augment the design process, either by
giving specific examples of design steps or by filling in gaps in the process. Further, it
can also be used in deciding when and how to refactor, because each pattern specifies
when it applies and how it resolves the forces at play. Refactoring often involves
replacing one pattern with another from the same pattern language that generated the
program. (This idea has begun to attract research interest in the broader refactoring
community.)

4.2 Software Patterns Community

One of the goals of software patterns is to communicate expertise, and so most pattern
languages aim to teach. For historical reasons, the bulk of the current patterns literature
deals with OO programming, telecommunication systems, and organizations. Recent
book-length efforts have extended pattern approaches to interaction design and the design
of small-memory systems. However, several papers document patterns of functional and
declarative programming.

In addition to Roundabout, I have also written Envoy, a pattern language for programs
that maintain state using closures [11]. Ferguson and Deugo discuss stereotypical ways
to build complex control structures using call-with-current-continuation in
Scheme [5]. Hanmer describes techniques for writing efficient logic programs in Prolog
[7].

Some patterns work bridges the OO and functional programming communities. Sandu
and Deugo [9] consider how OO programmers use anonymous behaviors to configure
higher-order constructs or to defer specifying a computation until a later time. Kuehne
[8] shows how common patterns of functional programming can generate desirable OO
designs.

4.3 Computer Science Education Community

OO design patterns have become a standard part of the computer science curriculum, and
Design Patterns [6] has become a standard text for teaching OO program-ming courses
after the first year curriculum. Many educators have also developed materials based on
these patterns for teaching first-year courses [14, 15].

A small group of computer science educators have documented so-called elementary
patterns for teaching object-oriented and procedural programming. These patterns seek to
capture the low-level design and programming knowledge that underlies more advanced
patterns, the sort of knowledge that every expert programmer has and uses
subconsciously. This work includes patterns of selection [2], loops [1], and
substitutability and delegation [3]. In many ways, my work with Roundabout explores
patterns of functional programming at the same level, appropriate for relative novices
with the style.

5 Conclusion

This paper describes some of my work documenting patterns of functional programs and
using these small pattern languages to teach elements of functional programming. In this
approach, patterns serve as a vocabulary of design elements; the pattern language itself
documents both relationships among patterns and a process for generating stylistically
pleasing programs that meet functional goals. The pattern form encourages the author to
explain carefully when each design element works best, and why, and such explanation
can help students better understand how to use the techniques they learn. These benefits
also accrue to instructors who read and write patterns, perhaps especially to those who
write them.

To follow this approach more widely, programmers and educators need to build a more
complete literature of pattern languages of functional programs. The existing literature
fills only a few small niches. The set of topics yet to describe is rich and varied, from
the uses of techniques such as higher-order procedures and currying to more advanced
topics such as monads. Another fruitful avenue is to study the targets of typical
refactorings of functional programs.

More work also needs to be done to explore and document ways to use patterns
effectively in teaching. The value of such work can hardly be overestimated. Though
faculty generally design a curriculum with their students in mind, often it most benefits
other faculty who will teach it. Teachers need to learn both the content of the approach
as well as how to present it effectively. The largest first-order effect of design patterns on
OO programming instruction has been on the instructors, and this would likely hold for
functional programming instruction, too.

The value in documenting pattern languages of functional programs extends beyond its
potential effects on university teaching. Pattern languages share expert programming
knowledge with a larger audience. Design patterns have played a central role in the
transfer of OO technology within industry. Documenting pattern languages of functional
programs may help to reveal the beauty and power of functional programming to a wider
audience of programmers.

References

[1] Owen Astrachan and Eugene Wallingford, Loop Patterns , Proc. Fifth Pattern Languages
of Programs Conference, Allerton Park, Illinois. 1998.

[2] Joe Bergin, Selection Patterns, Proc. Fourth European Pattern Languages of Programs
Conference, Bad Irsee, Germany, 1999.

[3] Dwight Deugo, Foundation Patterns , Proc. Fifth Pattern Languages of Programs
Conference, Allerton Park, Illinois. 1998.

[4] Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, and Shriram Krishnamurthi,
How to Design Programs: An Introduction to Computing and Programming, MIT Press,
Cambridge, Massachusetts, 2001.

[5] Darrell Ferguson and Dwight Deugo, Call with Current Continuation Patterns , Proc.
Eighth Pattern Languages of Programs Conference, Allerton Park, Illinois, 2001.

[6] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, Design Patterns,
Addison Wesley, New York, 1995.

[7] Robert Hanmer, Patterns of Efficient Prolog Programs. Proc. Third Pattern Languages
of Programs Conference, Allerton Park, Illinois, 1996.

[8] Thomas Kuehne, A Functional Pattern System for Object-Oriented Design, Verlag Dr.
Kovac, Hamburg, Germany, 1999.

[9] Dorin Sandu and Dwight Deugo, The Lambda Pattern, Proc. Sixth Pattern Languages of
Programs Conference, Allerton Park, Illinois, 1999.

[10] Simon Thompson and Claus Reinke, Refactoring Functional Programs, Technical
Report 16-01, Computing Laboratory, University of Kent at Canterbury, October 2001.

[11] Eugene Wallingford, Envoy: A Pattern Language for Maintaining State in a Functional
Program, Proc. Sixth Pattern Languages of Programs Conference, Allerton Park, Illinois,
1999.

[12] Eugene Wallingford, Roundabout: A Pattern Language for Recursive Programming.
Proc. Fourth Pattern Languages of Programs Conference, Allerton Park, Illinois, 1997.

[13] Eugene Wallingford, Using a Pattern Language to Evaluate Design, OOPSLA Workshop
on Evaluating Object-Oriented Design, Vancouver, British Columbia, 1998.

[14] Michael Wick, Kaleidoscope: Using Design Patterns in CS1, SIGCSE Bulletin
33(1):258-262, 2001.

[15] Stephen Wong and Dung Nguyen, Design Patterns for Games, SIGCSE Bulletin
34(1):126-130, 2002.

Appendix 1: The Mutual Recursion pattern from Roundabout [12]

You are using Structural Recursion (1).

What should you do when the data you are recursing on is defined in terms of another
inductively-specified type?

Consider the procedure replace, which operates on s-lists:

 <s-list> ::= ()
 | (<symbol-expression> . <s-list>)

Symbol expressions are defined as:

 <symbol-expression> ::= <symbol>
 | <s-list>

replace takes three arguments: an object symbol, a target symbol, and an s-list. It
returns an s-list identical in all respects to the original except that every occurrence of the
target symbol has been replaced with the object symbol. For example,

 > (replace 'a 'b '((a b) (((b g r) (f r)) c (d e)) b))
 ((a a) (((a g r) (f r)) c (d e)) a))

Using Structural Recursion (1), you might produce:

(define replace
 (lambda (new old slist)
 (cond ((null? slist) '())
 ((symbol? (car slist))
 (if (eq? (car slist) old)
 (cons new (replace new old (cdr slist)))
 (cons (car slist) (replace new old (cdr slist)))))
 (else (cons (replace new old (car slist))
 (replace new old (cdr slist)))))))

Your procedure works, but it is not really true to the structure suggested by the BNF.
replace uses the BNF to organize the computation, but the structure of the resulting
program doesn’t mimic the structure of the BNF. The data definition has two
components, one for s-lists and one for symbol expressions. These components are
mutually inductive, that is, defined in terms of one another. Should your code have this
structure, too?

You would like to make your code as straightforward as possible, with as few side trips
as possible. Creating a single procedure to compute the result achieves this goal, because
it focuses the reader’s attention on a single piece of code. But you also want to be
faithful to the structure of your data, because it simplifies the individual pieces of code
and makes later changes to data definitions easier to incorporate. Having multiple
procedures that interrelate must be handled with care, however, because you want your
reader to be comfortable following the computation.

Therefore, use Structural Recursion (1) on both data definitions. Each procedure will
invoke the other at the corresponding point in the code. Give the helper procedure a
name that indicates the data type on which it operates.

To apply this pattern to replace, write two procedures. The first, replace, operates on
s-lists. To write the arm of replace that handles symbol expressions, assume that the
second, replace-symbol-expr, already exists.

 (define replace
 (lambda (new old slist)
 (if (null? slist)
 '()
 (cons (replace-symbol-expr new old (car slist))
 (replace new old (cdr slist))))))

Now, write replace-symbol-expr, using replace in the arm that handles s-lists:

 (define replace-symbol-expr
 (lambda (new old sym-expr)
 (if (symbol? sym-expr)
 (if (eq? sym-expr old)
 new
 sym-expr)
 (replace new old sym-expr))))

Mutual Recursion (3) relies on multiple procedures making calls to one another. If this
results in a program that is too inefficient, try using Program Derivation (7) to retain
most of the benefits of the design while achieving better performance. Also, the extra
procedures may clutter the global name space of the program or otherwise make code
management more difficult. If that is the case, try using a Local Procedure (6) .

