

235

P
art III

Par t III

XTT: Extreme Technology
Transfer—Introducing

XP and AMs

Extreme Programming and other agile methodologies consist of pre-
scribed practices. Some of these agile practices are based on previously
established best practices. Practitioners and educators feel confident in
using and teaching these best practices. In other cases, agile practices
alter or depart from best practices. These are the harder practices to
adopt and to have the confidence to teach. The authors in this section
share experiences and techniques for teaching agile practices and transi-
tioning teams to their use.

Part III begins with chapters written by university educators who
have used various XP practices in the university classroom. First, in
Chapter 21, Owen Astrachan, Robert Duvall, and Eugene Wallingford
discuss their experiences in integrating XP into their classes. These edu-
cators have developed an innovative form of “pair programming” by
having the instructor play the role of the driver. Jointly, all the students
in the class play the role of the navigator and guide the teacher to a suc-
cessful program implementation. Additionally, they have increased the
number of “releases” required of their students to provide more timely
and increased feedback. Last, they have introduced refactoring as a
means to improve understanding of programs and design patterns.

In Chapter 22, Mike Holcombe, Marian Gheorghe, and Francisco
Macias describe their experiences in integrating XP into their senior-
level course on software engineering projects. In this course, the stu-
dents build real projects for real clients. Customer satisfaction and high

111_SUCCI.ch21.fm Page 235 Thursday, June 27, 2002 8:11 AM

236

Extreme Programming Perspectives

quality are essential because maintenance is virtually impossible as the
students graduate and leave their projects behind. The authors report
success and a positive student response. Dean Sanders shares students’
mostly positive perception of XP and XP’s practice of pair program-
ming, based on a pilot course, in Chapter 23. David Johnson and
James Caristi share similar experiences in their software design course in
Chapter 24. These two educators describe their successes and offer
some suggestions for future use of XP in a software design course.

Chapter 25 presents the experiences of Ann Anderson, Chet Hen-
drickson, and Ron Jeffries in running their tutorial on user stories and
the planning game. This chapter is extremely valuable for both educa-
tors and developers.

Joshua Kerievsky contends that XP’s values of feedback and commu-
nication support continuous learning. This learning can enable per-
sonal and process improvement. In Chapter 26, Joshua suggests that
XP be augmented with a learning repository and organizational sup-
port for study groups and iteration retrospectives.

The concepts of the XP release planning practice can be difficult to
sell and internalize with students and professionals, including develop-
ers and businesspeople. In Chapter 27, Vera Peeters and Pascal Van
Cauwenberghe present a playful but effective interactive game to teach
these concepts. While planning the game, participants experience first-
hand user stories, estimation, planning, implementation, functional
tests, and velocity.

In Chapter 28, Moses Hohman and Andrew Slocum discuss an in-
novative practice they term “mob programming,” a variant of the XP
pair programming practice. With mob programming, groups larger
than two work together to refactor code. Employing this practice, their
team has strengthened its use of other XP practices, such as pair pro-
gramming and automated unit test cases. They have also further em-
braced the XP values of communication and courage.

“Show me the money.” Some managers and practitioners remain
skeptical of agile practices and methodologies. They desire proof before
transitioning from their “trusted” practices. In Chapter 29, Laurie Wil-
liams, Giancarlo Succi, Milorad Stefanovic, and Michele Marchesi offer
an empirical model for assessing the efficacy of agile practices and the
impact of their use in creating quality software.

111_SUCCI.ch21.fm Page 236 Thursday, June 27, 2002 8:11 AM

237

P
art III

Chapter 21

Bringing Extreme Programming
to the Classroom

—Owen L. Astrachan, Robert C. Duvall, and Eugene Wallingford

In this chapter, we discuss several features of XP that we have
used in developing curricula and courses at Duke University
and the University of Northern Iowa. We also discuss those prac-
tices of XP that we teach as part of the design and implementa-
tion process we want students to practice as they develop
programming expertise and experience. In theory the academic
study of programming and software development should be able
to embrace all of XP. In practice, however, we find the demands
of students and professors to be different from professional and
industrial software developers, so although we embrace the phi-
losophy and change of XP, we have not (yet) adopted its princi-
ples completely.

Introduction

Extreme Programming (XP) [Beck2000] and other light or agile meth-
odologies [Agile2000; Fowler2000A] have gained a significant foot-
hold in industry but have not yet generated the same heat (or light) in
academic settings.

Copyright © 2003, Owen Astrachan, Robert C. Duvall, Eugene Wallingford. All rights

reserved.

111_SUCCI.ch21.fm Page 237 Thursday, June 27, 2002 8:11 AM

238

Extreme Programming Perspectives

Significant interest in pair programming in an academic setting, and
a resulting interest in XP, has been fostered by the work of Laurie Wil-
liams [Williams2000; Williams+2000]. However, the general tenets of
XP are less known, and the engineering background of many academic
computer science programs facilitates adoption of process-oriented
methodologies such as the Personal Software Process (PSP) even early
in the curriculum [Humphrey1997; Hou+1998]. However, we have
had preliminary success in adopting and adapting principles of XP (and
other agile methodologies) in classroom teaching and in the methods
we teach and instill in our students. Although academic requirements,
goals, and methods differ from those in industry, we have found that
many aspects of XP can be incorporated into the design and imple-
mentation of a university-level computer science and programming
curriculum.

What’s Extreme about XP?

As explained in [Beck2000], XP takes good practices of professional
software development to extreme levels. XP introduces a planned and
coherent methodology without becoming overly dictatorial or secre-
tarial. The four values of XP are given as communication, simplicity,
feedback, and courage.

As we explain in this chapter, these values form the foundation of
our approach. Thus, we think we’re following the spirit of XP, although
we’re certainly not following every XP practice (testing, pair program-
ming, planning game, and so on) [Hendrickson2000].

From these core XP values, five principles are given as fundamental to
XP. Our approach uses each of these principles: rapid feedback, assume
simplicity, incremental change, embracing change, and quality work.

Ten “less central principles” from [Beck2000] are given, of which
we concentrate on the following four: teach learning; concrete experi-
ments; open, honest communication; and local adaptation.

For example, as instructors, we often face a tension in developing
good (often small) example programs for students. The tension arises
because we want to develop simple, focused examples that teach a spe-
cific concept, yet we also want to show our students programs that are
masterpieces of good design—programs that are fully generic and ro-
bust, and exemplify the best practices of object-oriented design and
programming.

111_SUCCI.ch21.fm Page 238 Thursday, June 27, 2002 8:11 AM

Chapter 21 Bringing Extreme Programming to the Classroom

239

P
art III

XP advocates that we design the simplest possible solution that
works well for the current set of requirements, not those that we imag-
ine will exist in the future. This helps relieve some of the tension of de-
signing overly generic or optimized programs when creating example
code.

Additionally, with this new mind-set, we can now add new features
to that example and show students how the code changes. In other
words, we can give the students a peek into the process of creating pro-
grams. When we call this process refactoring, we can discuss a pro-
gram’s design in more concrete terms [Fowler2000B].

In this chapter, we report on three aspects of XP that we have em-
ployed very successfully. We have used XP in our introductory pro-
gramming courses for majors, in advanced courses on object-oriented
software design, and in programming courses for nonmajors. These
three aspects are as follows:

✧

Pair (teacher/class) programming as part of lecture

✧

Small releases from student groups

✧

Refactoring to understand programming and design patterns

Our Clients

Embracing change within a university setting is different from industry
because our clients are different. In fact, when using XP, we are meet-
ing the demands of two different client/customer groups.

✧

We strive to develop programmers who appreciate simplicity and
elegance, who love building software, and who understand the
contributions of computer science to software design. The process
we mentor and teach must resonate with our students and scale
from introductory programming courses to more advanced
courses in software architecture.

✧

We want our curriculum, assignments, and materials to be
adopted and adapted by educators all over the world. Our materi-
als must be simple and elegant, and support adaptation and refac-
toring to meet local demands. The process and materials must
resonate with educators at a level different from the resonance we
hope for with students.

111_SUCCI.ch21.fm Page 239 Thursday, June 27, 2002 8:11 AM

240

Extreme Programming Perspectives

Our student clients take several courses each semester. They devote
20% to 40% of their time to a course on programming, depending on
the demands of other courses and the interest level we can maintain in
our courses. We assume that students live and breathe solely for our
courses, but we are also not surprised that other professors in other de-
partments hold similar views about their courses. Thus, it is difficult for
groups of students to meet frequently or for extended periods of time
outside of class.

The structure of the work students do in our courses varies from tra-
ditional lecture to structured (time-constrained) labs, to unstructured
group and individual activity in completing assignments. Our XP-based
material typically takes more time to prepare and requires us to use XP
practices to produce it.

Lecturing Using Pair Programming

We use a didactic form of pair programming in our large lecture
courses. The instructor is the

driver

, while the class as a whole (from 40
to 180 students) works together as the second member of the pair pro-
gramming team, which we call the

navigator

. A typical scenario, used
from beginning to advanced courses, is outlined in the following two
sections. First we explain the process from a student view; then we elab-
orate on the process from a faculty developer perspective.

Student View

✧

A problem is posed that requires a programming solution. The
problem and its solution are intended to illustrate features of a
programming language, elements of software design, and princi-
ples of computer science and to engage students in the process.

✧

A preliminary, partially developed program is given as the first
step to the solution. Students read the program and ask questions
about it as a program and a potential solution.

✧

The instructor displays the program on a projection screen visible
to the class (each student has a written copy) and adds functional-
ity with input from the class. This involves writing code, writing
tests, and running and debugging the program. The instructor

111_SUCCI.ch21.fm Page 240 Thursday, June 27, 2002 8:11 AM

Chapter 21 Bringing Extreme Programming to the Classroom

241

P
art III

drives the process, but the class contributes with ideas, code, and
questions.

✧

The final program is added to the day’s Web site for reflection and
completeness and for those students unable to attend class. Both
the initial and final programs are part of the materials available to
students.

We have tried a variety of standard active-learning techniques in this
form of pair programming: calling on random students to contribute,
breaking the class into small groups to provide solutions, and making
pre- and post-class-work questions based on the programming problem.

Educator View

The instructor who drives a programming problem and solution must
develop a complete solution beforehand and then refactor the solution
into one that meets the needs of the instructional process as described
in the previous section. This process may take more preparation time
and require more responsibility from the instructor during class time
than a traditional lecture.

✧

The instructor finds a problem and develops a complete pro-
gram/solution to the problem. The solution is developed using
XP, but the goal is a simple, working program, which isn’t always
the right instructional tool.

✧

The program must be refactored until it is simple enough to be
understood by the student client while still achieving the intended
didactic goals. This simplification process is often easier in intro-
ductory courses because the programs are smaller. In some cases,
especially in more advanced courses, a problem and its solution
must often be completely reworked or thrown out when they’re
too complex to be used in a one-hour lecture.

✧

Parts of the program are then removed so the program can be
completed as part of an instructor/class pair programming exer-
cise. The instructor has an idea of what the solution could be, but
the solution developed during class isn’t always the one the in-
structor pared away. Instructors must be comfortable with accept-
ing and using student input, going down knowingly false trails for
instructional purposes.

111_SUCCI.ch21.fm Page 241 Thursday, June 27, 2002 8:11 AM

242

Extreme Programming Perspectives

Small Releases Mean Big Progress

Students in our nonmajor’s programming course as well as our first-
and second-year major’s courses sometimes work on large projects in
groups, in which they may be given as much as three weeks to complete
the project. The projects are not designed to require students to work
full-time for the duration of the assignment; instead, the schedule is
typically padded to allow them time to work out group meetings, to do
other course work, and to learn the topics necessary to complete the as-
signment. Typically, the assignment is discussed repeatedly in and out-
side of class during this time, but rarely do most curricula require
students to demonstrate their progress until the final deadline. This
practice has caused mixed success in these large projects—sometimes
groups fail to deliver even a compiled program!

This past year, we have changed to requiring many small releases be-
fore the final project is completed, giving the students only a few days
to a week to submit part of the final product. We then work with our
teaching assistants to look at these releases and provide groups with
feedback while they are still working on the project. Using this practice,
every group successfully completed the project, and the quality was
much higher than what we experienced in previous semesters.

Student View

Many students abuse the time given in a large project by ignoring the
project until the last minute and then coding in long spurts until it is fi-
nally done. This style of working gives the computer science depart-
ment a reputation for being hard and requiring all-night coding
sessions. Although this process may make sense in the context of jug-
gling all the demands placed on a student, it leads to many problems
when creating a good software project.

✧

Communication between group members is generally very tenu-
ous unless they are all in the same room. Because no one is certain
when a specific feature will be worked on, it is hard to count on a
feature getting done, let alone planning to use it, improving on it,
or adding to it.

✧

One way of dealing with the communication problem is to meet
once at the beginning of the project and break it into chunks that
can each be managed by one student working alone. The stu-
dents then meet again at the end of the project and attempt to

111_SUCCI.ch21.fm Page 242 Thursday, June 27, 2002 8:11 AM

Chapter 21 Bringing Extreme Programming to the Classroom

243

P
art III

integrate their individual parts into a working whole. The first
step goes well, but, unfortunately, the last step rarely does for av-
erage groups.

✧

When dividing the work, some students may have much more to
do than others in the group, either because some features were not
understood well enough when the project was planned or because
one student got very excited about a part and added many extra
features. Additionally, most students do not understand the details
of the other parts of their project.

Making small releases has helped relieve these problems simply be-
cause it requires the group to communicate more often. Not only can
the course staff better monitor the group’s progress, but so can the stu-
dents. Because they had to integrate their code more often, they typi-
cally had something that they could run while they were working.

Students reported that this led to even more intragroup communi-
cation because having a running program gave them more to discuss
with their group members: how to improve specific features, curiosity
about how other parts of the project were implemented, and plans to
determine what parts remained to be done.

Students also reported that they were actually proud of their
projects. Many more groups were inspired to add more features as they
worked with their programs to make them easier to use or more inter-
esting. In one case, students were asked to complete a game that could
be run from a Web page. One group told other students in their dorm
about the Web page and soon had a large user community. As people
played, they made suggestions for new features. The group published
new versions of the game as often as every 20 minutes! Many of these
features were not part of the specification for the game but ended up
being extra credit.

Educator View

The instructor developing small releases for large projects must do
some more work to take advantage of these benefits. First, one must
decide what will be required for each release and schedule these dead-
lines as if they were real, including minimizing conflicts with the uni-
versity schedule. In essence, each release becomes an assignment in
itself. This extra work is balanced in some sense because it may make it
possible to better plan the order of topics in the course.

111_SUCCI.ch21.fm Page 243 Thursday, June 27, 2002 8:11 AM

244

Extreme Programming Perspectives

Additionally, each release must be checked and feedback given to the
group as quickly as possible. This is even more important because these
mini-assignments build toward a single final project, and feedback after
the assignment is over is all but useless to the group. In our courses, we
typically meet with the group as a whole once a week during the
project, demonstrating their project, discussing its design, and planning
for the next deadline. In fact, the role of the course staff is often crucial
to realizing truly big progress from these small releases.

For example, in our advanced programming course, we have asked
students to complete a LOGO interpreter and programming environ-
ment [Papert1980]. They had three and a half weeks to complete the
assignment, and we gave them six deadlines: Three required written
submissions, and three required running code. The first two deadlines
attempted to get students to think about the project by asking them to
explain specific design issues and use cases with respect to the project
[Cockburn2001]. For each of the next three weeks, they turned in suc-
cessively larger releases of their project, the last being the final version.
In each case, they were told to focus on getting the current, smaller set
of requirements finished rather than trying to show that they had
started, but not finished, all parts of the project. Finally, after the final
version was submitted, each student in the group was asked to com-
plete an individual project postmortem, reflecting on the group experi-
ence [Kerth2001].

An unexpected benefit of these small releases was that the course
staff was able to grade the projects more quickly and give better feed-
back because they already knew the details of the code. They had
learned the details as the project was built instead of having to learn
them after the fact. Teaching assistants reported that student groups
were more open when talking with them if they started from the begin-
ning of the project as opposed to only starting a dialogue after the
project was complete (and the student’s grade was more clearly on the
line). This resulted in faster, higher-quality grading.

Refactoring for Learning Design

We use refactoring both to improve the quality of student programs
and to help students understand the basic tenets of object-oriented
software design.

111_SUCCI.ch21.fm Page 244 Thursday, June 27, 2002 8:11 AM

Chapter 21 Bringing Extreme Programming to the Classroom

245

P
art III

For many years, we used a form of apprentice learning in which we
provided simple, elegant designs that students implemented in solving
problems [Astrachan+1997]. The idea was to instill a sense of elegance
by experiencing our designs. However, students were not able to inter-
nalize the design principles simply by filling in a finished design. Stu-
dents would not use the principles in our designs because they could
not appreciate them as being useful in solving problems: They appreci-
ated the designs only as rules to follow to receive a good grade.

Now we ask students to develop the simplest (to them) working so-
lution they can to solve a problem. We then ask them to change their
solutions to accommodate changes in the problem specification. We
help them understand how to refactor their solutions to incorporate
design patterns and fundamental software design principles that they
are able to appreciate in a more visceral way because their solutions can
be refactored to accommodate the changes.

For example, we start with a series of examples from [Budd1998] that
introduce, first, a simple bouncing-ball simulation, then a game that fires
cannonballs at a target, and finally a pinball game. During these exam-
ples, we build the inheritance hierarchy shown in Figure 21.1 for the
balls used in each game, in which each kind of ball responds differently to
the

move()

 message.
The students are then asked to allow the balls to decelerate, or not,

in any of the programs (according to friction or some other property).
Initially, they create an additional subclass for each kind of ball, leading
to the hierarchy shown in Figure 21.2.

Ball

MovableBall

BouncedBall CannonBall

PinBall

FIGURE 21.1 Initial ball inheritance hierarchy

111_SUCCI.ch21.fm Page 245 Thursday, June 27, 2002 8:11 AM

246

Extreme Programming Perspectives

For most students, this is a simple solution, easy to understand and
implement. However, the students also realize that there is a lot of
duplicated code, because each decelerating subclass changes

move()

 in
the same way. In particular, it is easy to motivate that a change made
to one subclass will need to be made in all the subclasses. Moreover,
any new kinds of balls will need a decelerating subclass in addition to
their own.

Students understand that this is not an ideal solution and are primed
to find a better way to solve this problem. Because all balls adhere to
the same interface, they can be substituted for each other. A movable
ball can be used where a cannonball can or where a decelerating pinball
can. Using this principle, we show students how to implement a decel-
erating ball that takes another kind of ball as an argument and delegates
the bulk of its work to that ball, and how to add its decelerating behav-
ior. We show the students the diagram, shown in Figure 21.3, that
characterizes our solution and ask them to refactor their first solution
to fit this model.

In this case, they are using the decorator pattern but do not know it
as such [Gamma+1995]. After going through another example, we
show them the general pattern, but by then they have internalized it and
can explain when it is useful. Instead of telling them the pattern and ask-

Ball

BouncedBall CannonBall

PinBall

MovableBall

Decelerating
CannonBall

Decelerating
PinBall

Decelerating
BouncedBall

Decelerating
MovableBall

FIGURE 21.2 First attempt at extending the ball inheritance hierarchy

111_SUCCI.ch21.fm Page 246 Thursday, June 27, 2002 8:11 AM

Chapter 21 Bringing Extreme Programming to the Classroom

247

P
art III

ing them to understand it from some abstract description, we have
shown a concrete example and motivated them to find a better solution
(which just happens to be one for which we already have a name).

Conclusion

No single practice of XP stands on its own; instead, it must be rein-
forced by the practices of XP [Beck2000]. For example, designing for
the current requirements as simply as possible works only if you are
willing to pause to refactor any part of the code as needed. And you can
feel comfortable refactoring code only if you collectively own and un-
derstand all the code. Pair programming helps promote this collective
ownership. In this chapter, we have discussed several ways for academ-
ics to embrace the changes espoused by advocates of XP.

Currently, our students do not necessarily practice XP when they
program outside of the classroom. We have introduced some of the
ways in which our students differ from professional programmers cur-
rently practicing XP. Instead, we have attempted to design our curricula
and methods to help students practice certain aspects of XP automati-
cally and to understand how these practices can improve the way they
think about programming and program design by giving them a view
of how programs are constructed.

Thus, we feel our efforts are certainly in the style of XP even if we
are not doing all 12 practices. However, we feel that more growth is

Ball

BouncedBall CannonBall

PinBall

MovableBall

DeceleratingBall

FIGURE 21.3 Refactored ball inheritance hierarchy

111_SUCCI.ch21.fm Page 247 Thursday, June 27, 2002 8:11 AM

248

Extreme Programming Perspectives

still possible by incorporating some additional practices. Here are some
that we are beginning to experiment with.

✧

We would like to emphasize testing more in our advanced pro-
gramming courses. Using tools like JUnit (see http://www.junit.
org), we would like to automate the testing process so that stu-
dents test their code each time they compile. If something did
not pass a test, we hope they would be motivated to fix it imme-
diately rather than ignoring it. Initially, we feel that we would
have to write these tests for them to get them into that habit.

✧

All instructors advise their students to design (or plan) before
writing their code, and sometimes beginning students even follow
that advice (but it is hard to avoid the lure of the computer). We
have begun to incorporate the planning game, along with meta-
phor (or vision), to make this phase of the project more useful,
fun, and concrete for the students. Instead of simply asking stu-
dents to create a UML diagram, we ask them to make stories, or
use cases, and create a project Web page that acts as an advertise-
ment of the team’s vision of the project.

✧

It is especially hard with group projects to make sure that every-
one in the group understands the entire project. To promote bet-
ter understanding of the overall project, we would like to move
students around within and without their group. Additionally, this
would force groups to take on new members during the project
and have some plan and materials to get new members up to
speed on the project’s design.

References

[Agile2001]

Manifesto for Agile Software Development.

 http://
agilemanifesto.org/. 2001.

[Astrachan+1997] O. Astrachan, J. Wilkes, R. Smith. “Application-
Based Modules Using Apprentice Learning for CS2.

Twenty-
Eighth SIGCSE Technical Symposium on Computer Science Educa-
tion,

 February 1997.

[Beck2000] K. Beck.

Extreme Programming Explained: Embrace
Change

. Addison-Wesley, 2000.

Au:

Break in

URL okay?

111_SUCCI.ch21.fm Page 248 Thursday, June 27, 2002 8:11 AM

Chapter 21 Bringing Extreme Programming to the Classroom

249

P
art III

[Budd1998] T. Budd.

Understanding Object-Oriented Programming
with Java

. Addison-Wesley, 1998.

[Cockburn2001] A. Cockburn.

Writing Effective Use Cases

. Addison-
Wesley, 2001.

[Fowler2000A] M. Fowler. “Put Your Process on a Diet.”

Software
Development

, December 2000. http://www.martinfowler.com/
articles/newMethodology.html.

[Fowler2000B] M. Fowler.

Refactoring: Improving the Design of Exist-
ing Code

. Addison-Wesley, 2000.

[Gamma+1995] E. Gamma, R. Helm, R. Johnson, J. Vlissides.

Design
Patterns: Elements of Reusable Object-Oriented Software

. Addison-
Wesley, 1995.

[Hendrickson2000] C. Hendrickson.

When Is It Not XP?

 http://
www.xprogramming.com/xpmag/NotXP.htm. 2000.

[Hou+1998] L. Hou, J. Tomayko. “Applying the Personal Software
Process in CS1: An Experiment.”

Twenty-Ninth SIGCSE Technical
Symposium on Computer Science Education

, 1998.

[Humphrey1997] W. Humphrey.

Introduction to the Personal Software
Process

. Addison-Wesley, 1997.

[Kerth2001] N. Kerth.

Project Retrospectives: A Handbook for Team
Reviews

. Dorset House, 2001.

[Papert1980] S. Papert.

Mindstorms

. Basic Books, 1980.

[Williams2000] L. Williams. “The Collaborative Software Process.”
Ph.D. diss. University of Utah, 2000.

[Williams+2000] L. Williams, R. Kessler. “Experimenting with Indus-
try’s Pair-Programming Model in the Computer Science Class-
room.”

Computer Science Education

, March 2001.

About the Authors

Owen L. Astrachan is professor of the practice of computer science at
Duke University and the department’s director of undergraduate stud-
ies for teaching and learning. He has taught programming in a variety

111_SUCCI.ch21.fm Page 249 Thursday, June 27, 2002 8:11 AM

250

Extreme Programming Perspectives

of environments for more than 20 years, each year searching for a sim-
pler, more agile approach in helping students understand computer sci-
ence and the craft of programming. Professor Astrachan is an NSF
CAREER award winner, has published several papers cowritten with
undergraduates on using patterns in an academic setting, and is the au-
thor of the textbook

A Computer Science Tapestry: Exploring Program-
ming and Computer Science with C++

, published by McGraw-Hill. He
won the Distinguished Teaching in Science award at Duke in 1995,
and the Outstanding Instructor of Computer Science award while on
sabbatical in 1998 at the University of British Columbia. Owen can be
reached at ola@cs.duke.edu.

Robert C. Duvall is not an actor, but a lecturer in computer science
at Duke University. Before moving to Durham, North Carolina, he did
his undergraduate and graduate work at Brown University, where he
helped move the curriculum from a procedures-first approach using
Pascal to an objects-first approach using Java. He has also taught with
Lynn Stein’s Rethinking CS101 project at MIT. Primarily, he enjoys
using graphics, object-oriented frameworks, and patterns to make cur-
rent research understandable and usable by novice programmers. Rob-
ert can be reached at rcd@cs.duke.edu.

Eugene Wallingford is an associate professor of computer science at
the University of Northern Iowa. He has been writing object-oriented
programming for more than ten years, in CLOS, Smalltalk, C++, Java,
and Ruby. He spent many years doing research in artificial intelligence,
where he built applications that used domain knowledge to solve prob-
lems in legal reasoning, product design and diagnosis, and ecological
systems. Eugene still does some work in AI but spends more of his time
studying the structures of programs and helping students learn how to
write programs. His work with programming and design patterns devel-
oped in tandem with a view on how programs grow in the face of
changing requirements, which in turn found a compatible philosophy in
Extreme Programming. Eugene can be reached at wallingf@cs.uni.edu.

111_SUCCI.ch21.fm Page 250 Thursday, June 27, 2002 8:11 AM

