
http://www.dilbert.com/strips/comic/2009-09-21/

A missed opportunity... I didn’t read Monday’s paper before our last session!

You and I are contractors who just won a bid to design a
custom video rental vending machine for customers of a local
grocery store. Arnold owns the store and, like many software
consumers, eschews standard solutions. He wants his own
custom design. He is also, however, a cheapskate.

Arnold tells us he wants a simple machine. All he wants is a
machine that rents videos for $1.00 each. That’s all. He
expects us to be able to put this little machine together
quickly and for little cost. We decide that the machine will
consist of:

 •
 a currency slot,

 •
 a drop slot for videos and change, and

 •
 three buttons, one for each video in stock.

The set-up for our exercise...

Design the program that runs
the video rental machine.

Work in groups of 2 or 3.
Your design should list the

program’s components, what each
does, and how they interact.

Choose your favorite language and style (procedural, OO, functional).

<discuss candidate designs>

Are there any open questions?

Which design is best?

How can we know?
What are the criteria?

correctness
simplicity

These are important criteria for almost any problem.

Why is simple good? Easier to understand. Easier to implement, and so cheaper to client?

flexibility
modifiability

Are these important criteria for almost any problem?
If not, why not?

What did
the spec ask for?

This relates to correctness and simplicity.
But it is also the first step to a more general criterion...

context

Designs must be considered and evaluated in context.
This is also true of the programs that implement them.

Designs are not good or bad
so much as better or worse.

... in a given context.

When the context changes, the evaluation of quality changes.
(Perhaps we should think in terms of suitability or fitness.)

Keep this in mind whenever you encounter any program, design, or system.

Good design
comes from experience.

Experience
comes from bad design.

Reading and studying designs helps.
Doing design is essential.

Unlike analysis, we have techniques for creating designs and heuristics for evaluating
their quality.

Designing any system requires:

• naming the key components in the system
• identifying the main responsibilities
 of each component
• identifying the main communication paths
 among the components

This is true of all design.

In structured design, our components take the form of procedures or modules.
In object-oriented design, our components take the form of objects.
In functional design, our components take the form of pure functions (no state).

high-level design

architecture

Components and their interactions are design at the high level.
They determine the shape of the system and the interaction patterns.
They do not determine the implementation of the system.

low-level
design

As we move away from the top-level shape of the system, we approach implementation.
This is design, too: selecting algorithms and data structures, parameter-passing modes,
databases, etc.

Can we take design all the way down to the code level, say, the choice between an for
statement and a while statement? Yes, indeed. Those are design decision, too — local and
perhaps easier to change, but design.

We will talk about software architecture next time and lower-level design after that.

How can we
communicate
our design?

We have to communicate design to our teammates, our bosses, our clients, their
accrediting agencies — not to mention programmers who will maintain the code in months
and years.

Text descriptions are almost always value. They allow us to explain things and discuss
nuances.

OO design: object diagrams, interaction diagrams

The Return of Arnold

After five machines are installed and in operation for a while,
Arnold comes along and says, “I would like to add Blue-Ray
disks, at a price of $2.00 each, to every machine. Change the
software.”

He gives us a machine with three more buttons.

How do you change your
software design?

Work with your
original group of 2 or 3.

<discuss candidate designs>

Who knew the price of the DVDs in your original design?
Who knows the price now?

What was simplest before can become incorrect in a new context!

procedural
decomposition

 stepwise refinement
 modules and submodules

Structured design is what most students learn in CS1-2, especially in an Ada or C
formulation. This approach follows directly from the work of DeMarco and Yourdon on
structured analysis and design in the 1970s. It has been modernized over time to take
into account concerns more common now, such as concurrency, but the techniques are
fundamentally the same.

Implement the inner modules with simple algorithms that call submodules and combine
their answers.

Implement leaf modules with simple algorithms using base data types and language
constructs.

We strive for simplicity in all modules, and decompose when a simple, direct
implementation is impossible.

Change is
unpredictable,

but we can try to
predict change.

The key to design systems in advance.

Arnold changed the system’s requirements after we implemented our system. That’s not
unusual. In fact, it’s the way things usually go. Tongue-in-cheek aphorism: “Clients don't
know what they want until you don’t give it to them.” Or until they see what you do give
them. And their business needs change, too, because their clients and environment
change.

By considering different scenarios, we guide the evolution of a design that is more flexible.
Most designers find it easier to grow a design than to create a complete design from
scratch. This is true whether we use a traditional approach or an agile one.

Many agile proponents encourage not trying to predict the future. Build the system and let
the future happen.

