
last week...

RemoteSensor

previousReading

ActiveSensor

range
operationalState

activate
assess

1 0..*

Problem

Interval

timeDetected
worstValue

timeCorrected

getDuration

Sensor

value

reading

sensors with problem intervals, some clean-up

RemoteSensor

previousReading

ActiveSensor

range
operationalState

activate
assess

1 0..*

Problem

Interval

timeDetected
worstValue

timeCorrected

getDuration

Sensor

value

reading

Now we would
like to consider

areas that contain
groups of sensors
as a unit. We will
monitor a “zone”
just as we monitor
and assess sensors.

add zones to the
class diagram

sensors with problem intervals, some clean-up

composite

a common design pattern:

move the relationship
up to the interface or
abstract class at the
root of the system

Dependency Inversion Principle

bad design

rigidity
fragility

 immobility

1. rigidity -- It is hard to change a component, because each change affects (too many)
other parts of the system.

2. fragility -- When you change a component, unexpected parts of the system break.

3. immobility -- It is hard to reuse a component in another application because it cannot
be disentangled from the current application.

three basic principles

Single Responsibility Principle

Liskov's Substitution Principle

Interface Segregation Principle

simple truths about design and programming (not just OO)

Single Responsibility Principle

A class has a single responsibility:
it does it all, does it well, and does it only.
— Bertrand Meyer

Each responsibility should be a separate class, because each responsibility is an axis of
change.

A class should have one, and only one, reason to change.

If a change to the business rules causes a class to change,
then a change to the database schema, GUI, report format,
or any other segment of the system
should not force that class to change.

Substitution Principle

Whenever possible, we should design a
system in terms of substitutable objects.

Often see reference to Liskov’s Substitution Principle (LSP).
Liskov’s original statement was about subtypes in language.
It has been generalized into a design principle that is too broad.
I have added a qualifier.

Barbara Liskov .. PL researcher .. abstraction, encapsulation .. CLU .. Turing Award ..
OOPSLA keynote
http://www.oopsla.org/oopsla2009/program/invited-speakers/215-oopsla-keynote-
speaker-turing-award-lecture-reprise

Substitutable Objects

An object X is substitutable for an object Y if
 • we can use X any place we use Y
and
 • the client code not know the difference.

Example: An interface or an abstract class with implementing classes. Variables typed to
the abstraction.

Interface Segregation Principle

No object should implement
an interface it doesn’t need.

Separate interfaces into
the smallest possible units.

so...

... and design the system so that objects do not to rely on interfaces they don’t need.

Example: TimedDoor

two trickier principles

Open-Closed Principle

Dependency Inversion Principle

These make sense but change how we tend to think about design.

They are more peculiar to software than other design disciplines, following from the
abstract nature of our raw material.

Open-Closed Principle

Design modules that never change.

A change to one class should not
change another class.

Instead:
 - make it possible to create useful subclasses
 - build relationships with abstractions and extensible classes
Examples:
 - client/server -> abstract server
 - GUI with shapes

violations of the OCP

public instance variables

global variables

RTTI
(or switching on an object’s class)

... or protected instance variables, either!

“No module that depends upon a global variable [or a public IV] can be closed against any
other module that might write to that variable. Any module that uses the variable in a way
that the other modules don't expect, will break those other modules. It is too risky to have
many modules be subject to the whim of one badly behaved one.”
— Robert Martin (Uncle Bob)

Dependency Inversion Principle

High-level modules should not depend
upon low-level modules.

Abstractions should not depend
upon details.

a structural implication of the OCP and the LSP

... Both should depend upon abstractions.

... Details should depend upon abstractions.

frameworks

next week

10/30/09

11/03/09

11/05/09

Friday: project designs are due (or: iteration 2 is due)

Tuesday: discuss designs in class ... informal presentations

Thursday: midterm exam

