Game Playing
function MiniMax(State s, Event e, boolean isMax)
 State s1 = updateState(s, e)
 if (isLeaf(s1))
 return eval(s1)
 if (isMax)
 highest = -\infty
 foreach (Event el in maxmoves(s1))
 tmp = MiniMax(s1, el, !isMax)
 if (tmp > highest)
 highest = tmp
 move = el
 return highest, move
 else
 lowest = \infty
 foreach (Event el in minmoves(s1))
 tmp = MiniMax(s1, el, !isMax)
 if (tmp < lowest)
 lowest = tmp
 move = el
 return lowest, move
MiniMax and Heuristics

• What about more complex games?
 – If the search space is too large
 • We could use a heuristic function to determine which nodes to expand first.
 • Unfortunately, not very useful/helpful
MiniMax and heuristics

- Practically, rather than implement MiniMax, we implement MiniCutoff
 - Don’t build the whole tree. Takes lots of memory.
 - Limit the depth of “look ahead”
 - Use a utility function rather than an evaluation function.
Cutting Off Search

• MiniMaxCutoff is identical to the MiniMax algorithm from before except:
 – if (isLeaf(s1))
 – Is replaced with
 – if (isLeaf(s1) or cutoff(S))

• Chess:
 – 4 ply lookahead is a human novice
 – 8 ply lookahead is a typical PC or human master
 – 12 ply lookahead is Deep Blue or Gary Kasparov
Pruning

- Pruning is used to narrow the search down
 - e.g. if we find a branch where we will win no matter what, we don’t need to search that part of the tree anymore
 - And if we find a guaranteed losing line we don’t need to search that part of tree any more
MiniMax

- NIM Search tree

```
Max moves
Min moves
Max moves
Min moves
```
MiniMax

- NIM Search tree

Max moves
Min moves
Max moves
Min moves

1-5
1-1-4
1-1-1-3
1-1-1-1-2

2-4
1-2-3
1-1-2-2

3-3
2-2-2

6(?)

Max moves
Min moves
MiniMax

• NIM Search tree

1-5(?) → 1-1-4 → 1-1-1-3 → 1-1-1-1-2

6(?) → 2-4(?) → 1-2-3 → 1-1-2-2

3-3(?) → 2-2-2

Max moves
Min moves
Max moves
Min moves
MiniMax

- NIM Search tree

Max moves
Min moves
Max moves
Min moves
MiniMax

• NIM Search tree

- 6(?)
 - 1-5(?)
 - 1-1-4(?)
 - 1-1-1-3(?)
 - 1-1-1-1-2
 - 2-4(?)
 - 1-2-3(?)
 - 1-1-2-2(?)
 - 3-3(?)
 - 2-2-2

Max moves
Min moves
Max moves
Min moves
MiniMax

- NIM Search tree

1-5(?) 2-4(?) 3-3(?)

1-1-4(?) 1-2-3(?) 2-2-2

1-1-1-3(?) 1-1-2-2(?)

1-1-1-1-2(?)

Max moves
Min moves
Max moves
Min moves
MiniMax

• NIM Search tree

Max moves
Min moves
Max moves
Min moves
Max moves
Min moves

1-1-1-1-2(-1)
1-1-1-2(?)
1-1-4(?)
1-5(?)

1-1-2-2(?)
1-2-3(?)
2-4(?)
3-3(?)
6(?)
MiniMax

- NIM Search tree

```
       6(?)
        /   \
   1-5(?)  2-4(?)  3-3(?)
     /     /      /     \
1-1-4(?) 1-2-3(?)  2-2-2
     /     /      /     \   \
1-1-1-3(-1) 1-1-2-2(?)
   /       /           /   \
1-1-1-1-2(-1)
```

Max moves
Min moves
Max moves
Min moves
MiniMax

- NIM Search tree

```
Max moves
Min moves
Max moves
Min moves
```
MiniMax

• NIM Search tree

Max moves
Min moves
Max moves
Min moves
MiniMax

• NIM Search tree

Max moves

Min moves

Max moves

Min moves
MiniMax

- NIM Search tree

```
1-1-1-1-2(-1)  1-1-1-3(-1)  1-1-4(1)
|       |       |       |
|       |       |       |
| 1-1-2-2(1)  1-2-3(1)  2-4(?)
|       |       |       |
|       |       |       |
| 6(?)  3-3(?)  2-2-2
```

Max moves
Min moves
Max moves
Min moves
MiniMax

- NIM Search tree

```
   6(1)
  /   \
1-5(1) 2-4(?) 3-2(?)
 /       /   /
1-1-4(1) 1-2-3(1) 2-1-2
 /     /   /
1-1-1-3(-1) 1-1-2-2(1) 2
 /     \
1-1-1-1-2(-1)
```
Alpha Beta Pruning

• A generalized pruning procedure
 – During our depth-first search we remember
 • The score of the best choice so far for Max, alpha
 • And the best score so far for Min, beta
 – If we find a point where MIN can choose a move with the utility ≤ alpha. Then we can stop search there since
 • MAX will not choose a move since there are a alternative route that is better. (Where alpha was found)
procedure Minimax_alpha_beta(n, α, β)

Inputs
n a node in a game tree
α, β real numbers

Output
A pair of a value for node n, path that gives this value

best := None

if n is a leaf node then
return evaluate(n), None
else if n is a MAX node then
for each child c of n do
 score, path := MinimaxAlphaBeta(c, α, β)
 if score ≥ β then
 return score, None
 else if score > α then
 α := score
 best := c : path
 return α, best
else
for each child c of n do
 score, path := MinimaxAlphaBeta(c, α, β)
 if score ≤ α then
 return score, None
 else if score < β then
 β := score
 best := c : path
return β, best
Alpha-Beta (α-β) Pruning Example
Alpha Beta Pruning

• What can it do for us?
 – Allows deeper searches without penalty
 – Allows deeper searches at same time cost
 • The result is always the same as without pruning, but a lot faster
Do Exact Values Matter?

MAX

MIN

Behaviour is preserved under any monotonic transformation of Eval

Only the order matters:

payoff in deterministic games acts as an ordinal utility function