Beyond “Classic” Search
Review

• Take five minutes with your neighbors:
 – What is "Hill Climbing" as a search technique?
 – What can go "wrong" with Hill Climbing?
 – How does "Simulated Annealing" attempt to overcome this?
Genetic Algorithms (GAs)

• Genetic Algorithms (GAs) are adaptive heuristic search algorithms.

• GAs are designed to simulate processes in natural systems necessary for evolution (based on Darwin).

• In nature, competition among individuals for scanty resources results in the fittest individuals dominating over the weaker ones.

• Although randomized, GAs are by no means random, instead they exploit historical information to direct the search into the region of better performance within the search space.
Genetic Algorithms (GAs)

• **History**
 – Were formally introduced in the US in the 1970s by John Holland at University of Michigan.

• **Characteristics of GA**
 – Belong to the class of stochastic search methods (e.g., simulated annealing) where next move uphill is chosen randomly.
 – GAs operate on a population of solutions
 • most stochastic search methods operate on a single solution to the problem at hand
 – The algorithm is separated from the representation
How the GA Works

Chromosome

Gene: 1 0 1 1

Population

Selection
Crossover
Mutation

[Diagram showing the process of genetic algorithm with chromosomes, genes, selection, crossover, and mutation]
The GA Terminologies

• Chromosome (Genome)
 – A structure to encode solutions to the problem that can be stored in the computer.

• Population, selection, crossover, mutation
 – The GA creates a population of genomes
 – Then applies crossover and mutation to the individuals in the population to generate new individuals.
 – It uses various selection criteria so that it picks the best individuals for mating (and subsequent crossover).
The GA Terminologies

• Crossover
 – Typically two parents combine to produce two or more children.
 – Can define asexual crossover or single-child crossover as well

• Mutation
 – Introduces a certain amount of randomness to the search.
 – Help the search find solutions that crossover alone might not encounter.

• Objective function
 – Your objective (fitness) function determines how 'good' each individual is.
<table>
<thead>
<tr>
<th>Initial Population</th>
<th>Fitness Function</th>
<th>Selection</th>
<th>Crossover</th>
<th>Mutation</th>
</tr>
</thead>
<tbody>
<tr>
<td>24748552</td>
<td>24 31%</td>
<td>32752411</td>
<td>32748552</td>
<td>327485152</td>
</tr>
<tr>
<td>32752411</td>
<td>23 29%</td>
<td>24748552</td>
<td>24752411</td>
<td>24752411</td>
</tr>
<tr>
<td>24415124</td>
<td>20 26%</td>
<td>32752411</td>
<td>32752124</td>
<td>32752124</td>
</tr>
<tr>
<td>32543213</td>
<td>11 14%</td>
<td>24415124</td>
<td>24415411</td>
<td>24415411</td>
</tr>
</tbody>
</table>

![Chessboard Diagram](image.png)
Usage of GA

- The three most important aspects of using GA
 - definition of the objective/fitness function
 - definition and implementation of the genetic representation
 - definition and implementation of the genetic operators

- Beyond that you can try
 - Many different variations to improve performance
 - Find multiple optima (species - if they exist)

- Variations
 - Can modify the basic algorithm
 - Many parameters can be adjusted
 - If you get the objective function right, the representation right and the operators right, then variations will result in only minor improvements.
The Pros and Cons of GA

• Advantages
 – Very simple
 – Performs well on many different types of problems
 – Works well on mixed (continuous and discrete), combinatorial problems.
 – Attractive for some types of optimization
 – Less susceptible to getting 'stuck' at local optima than gradient search methods.

• Disadvantages
 – Tend to be slow
 – Tend to be computationally expensive
 – Do not adapt well to new situations