Remembering

1. What is black box testing?

2. What is the single fault assumption, and how does it affect our testing?

Understanding

3. Give the equivalence partitions generated using the specification below.

4. Give a test case for the partition below which would only be created using (weak, strong) (normal, robust) boundary value analysis.

5. Give the decision table representing the specification below and place a star under each column that would result in a test case being created if you wanted to eliminate redundancy (that is, reduce the table).

6. Consider the method and test cases given below. What is the “highest” level of coverage (condition, decision, condition/decision, modified condition/decision, multiple condition) achieved?

7. Give a set of inputs for the Boolean expression below which would achieve (condition, decision, condition/decision, modified condition/decision) but not (condition, decision, condition/decision, modified condition/decision, multiple condition).
Analyzing

8. How are equivalence partitioning and boundary value analysis related? Can I have, for instance, strong robust equivalence partitioning with weak normal boundary value analysis?

9. In “theory”, equivalence partitioning by itself should be a sufficient test case generation strategy. Why do we also have boundary value analysis?

Evaluating

10. When might you prefer using (equivalence partitioning, decision tables) over (decision tables, equivalence partitioning) for a black box testing strategy?

11. Give two benefits of using (decision tables, equivalence partitioning) to create test cases.

12. Several standards for safety-critical software (such as DO-178C) require organizations only use black-box testing. Defend this choice.