For the following problems, let $\Sigma = \{c, s\}$.

1. Prove the following language is *not* regular.

 $B_1 = \{ w \mid w \text{ contains an equal number of } c \text{'s and } s \text{'s} \}$

 - Assume B_1 is regular. This means the pumping lemma for regular languages holds – that is, *any* string s of length at least p that is in B_1 can be “pumped”.

 - Consider $s = c^p s^p$. Note $s \in B_1$ and s has length at least p, so s must be able to be “pumped”.

 - Given that the part we are pumping (y) must be non-empty, and that it must occur in the first p symbols of s, we know that y must: consist of 1 or more c’s

 - Consider the string s' which is created from “pumping” y 0 times.

 $s' = x y^0 z = c^{p - |y|} s^p$

 - Note that $s' \notin B_1$, as our inferences about y we made above mean: $p - |y| \neq p$, so there are fewer c’s than s’s

 - We therefore have a contradiction – B_1 is regular so s must be “pumpable”, but we have shown it is not “pumpable”. We reached this contradiction by assuming B_1 was regular. Therefore, B_1 is *not* regular.

2. Prove the following language is *not* regular.

 $B_2 = \{ c^n s^m \mid n \leq m \}$

 - Consider $s = c^p s^p$

 - We know that y must: consist of 1 or more c’s

 - $s' = x y^2 z = c^{p + |y|} s^p$

 - $s' \notin B_2$ because: $p + |y| > p$, so we have more c’s than s’s
3. Prove the following language is not regular.

\[B_3 = \{ w \mid \text{the length of } w \text{ is a power of } 2 \} \]

- Consider \(s = c^{2p} \)

- We know that \(y \) must: consist of at least 1 and at most \(p \) c’s

- \(s' = xy^2z = c^{2^p + |y|} \)

- \(s' \notin B_3 \) because:
 - Consider the next power of 2 and how it relates to \(s' \):
 - \(2^p < 2^p + |y| < 2^{(p+1)} \). \(|s'| \) is not a power of 2.

4. Prove the following language is not regular.

\[B_4 = \{ wc^n | w \text{ is a string over } \Sigma \text{ of length } n, n \geq 0 \} \]

- Consider \(s = s^p c^p \)

- We know that \(y \) must: consist of 1 or more \(s \)’s

- \(s' = xy^2z = s^{p+|y|} c^p \)

- \(s' \notin B_4 \) because:
 - \(p + |y| \neq p \), so the length of the c’s “part” is
 - less than the length of the w “part”.

5. Prove the following language is *not* regular.

\[B_5 = \{ w \mid w \text{ is a “balanced” string, with } c \text{ “opening” and } s \text{ “closing” } \} \]

(I’ve obviously made these terms up, but I’ll explain \(B_5 \) in class)

• Consider \(s = \underline{c^p s^p} \).

• We know that \(y \) must:
 consist of 1 or more \(c \)’s

• \(s' = \underline{xy^0z = c^{p-|y|}s^p} \)

• \(s' \notin B_5 \) because:
 \(p - |y| < p \), so fewer “opening” \(c \)’s than closing \(s \)’s