Practice Quiz 01

General Course Goals

1. Why do we need a formal model of computation to meet the goals of this class?

Using Formal Definitions

2. Provide the formal definition for (union, concatenation, star). Include the symbol for the operation.

3. Give a formal description of the finite automaton given below. You may assume that all symbols in the alphabet are shown on the diagram. *(See Exercise 1.2)*

4. Draw a state transition diagram which represents the formally-described finite automaton described below. *(See Exercise 1.3)*

Computation

5. For each of the following strings, state if the finite automaton given below would *accept* or *reject* the string. *(See Exercise 1.1)*

6. Construct a finite automaton that recognizes the language given below. *(See Exercise 1.5, 1.6)*

Proving Language Properties

7. Prove the following language is regular.

8. For any string $w = w_1w_2 \cdots w_n$, the *reverse* of w, written w^R, is the string w in reverse order (i.e. $w^R = w_n \cdots w_2w_1$). For any language A, let $A^R = \{w^R | w \in A\}$. Show that if A is regular, so is A^R. *(See Problem 1.31)*

9. Let $B_n = \{a^k | k$ is a multiple of $n\}$. Show that for each $n \geq 1$, the language B_n is regular. *(See Problem 1.36)*