Chapter 1
Defining Information Technology
History

• http://mason.gmu.edu/~montecin/computer-hist-web.htm

• https://en.wikipedia.org/wiki/History_of_computing_hardware

• http://www.columbia.edu/cu/computinghistory/census-tabulator.html
Learning Objectives

• The “big idea” of computing inventions
• Explain why it’s important to know the right word
• Define basic hardware and software terms
• Define and give examples of “idea” terms
Computation’s Big Ideas

- Digitizing information
- Stored-program computers
- Transistors
- Integrated circuits
- “Personal” computers
- The Internet
- World Wide Web
- Layered Software
Brief History

• 1200 -- Abacus used in China (reaches Japan around 1600)
 – to use an abacus you must learn the algorithm for moving the beads
• 1617 to 1630 -- Napier’s Bones, then the Slide rule -- calculating devices
• 1623 -- Schickard’s Calculator - interlocking gears, every 10 revolutions of a lower-order gear
 causes the next higher gear to increment 1 click.
• 1642 -- Pascal created the Pascaline, which could do + - * and \
• 1820 -- deColmar’s Arithmometer -- first mass-produced calculating device
• 1822 -- Charles Babbage - Difference Engine was first non-human powered computing
 device. Was powered by the steam engine. Used to calculate the large tables of numbers used
 for astronomical and engineering applications.
• 1834 -- Babbage designed a new computing device that was never built. It called for 4000
 precision-cut parts, and the technology of the day was not accurate enough for the task. The
 device called for long-term storage (punched cards) for programs and data -- ideas that are
 central to modern computing devices.
1890 - Hollerith Digitizes Census Data

1943 - U.S., U.K. and Germans Build 1st Computers

1958 - Kilby Invents Integrated Circuit

1969 - ARPANet Sends 1st Packet

1973 - Ethernet Developed

1975 - Allen and Gates Found Microsoft

1976 - Bardeen, Brattain, Shockley Transistor Nobel Prize

1981 - IBM Personal Computer

1992 - First SMS Message Sent

1996 - Nokia 9000 Launched

1997 - Google.com Registered

1997 - Deep Blue Beats Kasparov

2004 - Firefox Launched

2006 - Wii Launched

2006 - Watson Wins Jeopardy!

2010 - A Billion Facebook Users

2012 - iPhone
Computation’s Greatest Hits

• Digitizing information
 – data represented as numbers
 • the breakthrough! machines reading digital info
 – census data 1880
 • it took 8 years to process the data by hand
 – census data digitized (1890)
 • punch cards digitized the process (not a computer, a card reader) – reduced processing to 6 years, saved $5 million, and gave more statistical data.
 • Hollerith Tabulating Machine. Company he founded is now known as IBM.
Iowa’s Claim to Computing Fame

• Atanasoff-Barry Computer

• 1942 - “The FIRST automatic electronic digital computer” [emphasis added] Developed at Iowa State University.

• The card reader and card punch. The punch stored intermediate results onto a punch card, which were used later in the calculation.

• The memory drum could store 30 numbers

• Was not programmable

• http://jva.cs.iastate.edu/operation.php
Computation’s Greatest Hits

• Stored-Program Computers
 – central processing unit: instructions stored in memory (software)
 – programs can be changed quickly, more complex, and autonomous
 – large and complex: fills a room
 – vacuum tubes
 • use a lot of power
 • burn out
ENIAC, 1946

Figure 1.4 ENIAC. The Electronic Numerical Integrator and Calculator, started in 1943 and finished in 1946, shown in its formal portrait.
Computation’s Greatest Hits

• Transistors
 – alternative to vacuum tubes
 – low power, less heat
 – extremely reliable
 – small in size and weight
 – the problem: lots of assembly required
Figure 1.6 Transistors: (a) the first transistor made by Bardeen, Brattain, and Shockley; (b) a size comparison of a packaged transistor compared to a vacuum tube; and (c) a circuit board with electronic components mounted.
Computation’s Greatest Hits

• Integrated Circuits
 – transistors and connective parts (e.g., wires) are fabricated together in a multistep process

 – photolithography makes it all possible by “printing” the wires onto the circuits
Computation’s Greatest Hits

• Personal Computers
 – 1973: first personal machine, Xerox’s Alto
 – “There is no reason for any individual to have a computer in their home.”
 – how many computers do you have with you today?
Computation’s Greatest Hits

• The Internet
 – a network of networks
 – ARPANet sent its first message in 1969
 • used for email and file transfer
• HTTP and the World Wide Web
 – brings the Internet to the general public
 – HTTP can transfer any file to any computer
 – Mosaic: first widely used Web browser
Computation’s Greatest Hits

• Layered Software Development
 – until 1980 programs had little structure, making them difficult to write and maintain
 – programs at one level apply code for lower levels, and provide more advanced facilities for higher levels
Software Stack

- The Software Stack
 - Concept used to structure and organize the software in contemporary computer systems
 - Series of layers of programs that implement user applications.
 - Each software layer implements operations used to build the layers above
Software Stack

Figure 1.8 The software stack for the Android smartphone; the hardware is on the bottom, the apps are on top.
Software Stack

• Referring to the figure on the previous slide:
 – To check out a video on YouTube using a smart phone, you would:
 • use the browser application to get to YouTube
 • the browser app uses the window manager, and several other frameworks
 • the window manager uses media manager, and several other libraries
 • the media manager uses the display drivers, and several other kernel operations
Terms of Endearment

• Not only should you learn the right computing terms, but you should also understand how to use them to benefit from the technology.

• There are two practical reasons for this:
 1. Tech Support: everyone needs and uses it
 2. To learn a new subject, we must learn its terminology
Tech Support

• Usually, you must look up the answer yourself using the Help feature, or you must contact tech support
 – The technician might not know what you talking about
 – Without the right word, the search algorithm of the Help facility won’t work for you
Find The Computer

• Processor
 – the computer itself, usually hidden inside the box
 – connects to various input and output devices
 – the variations between computers depend on
 • the devices connected to the processor
 • the software run by the system
Here’s The Computer

Figure 1.9 “Teardown” of the iPhone 5: (a) the open case showing that more than half of the volume seems to be a lithium-ion battery, (b) the circuit board, which contains all the electronics including the A6 main processor chip (green), and is opposite the battery, and (c) detail of the A6 chip showing two ARM processors plus three graphics processing units—all are computers.
Software

Software is the collective name for programs.
- Programs contain the instructions which form applications
- The processor follows the program and carries out the application
Algorithms

An algorithm is a precise and systematic method for producing a specified result.

- Programs express algorithms
- Example: long division
The Words for Ideas

• “Abstract”
 – The word has several meanings:
 • In natural language: *to remove* can mean *to steal*
 • In computing: *to abstract* also means to remove, but this time, it’s an idea or a process, and it is extracted from some form of information

• Abstractions
 – Parables and fables require us to abstract the essential point of the story so that we can learn from it
Abstractions

• Notice two key points:
 1. Many, but not all the details, of the story are irrelevant to the concept
 2. The abstraction has meaning beyond the story

• In computing, separating the relevant from the irrelevant, and applying the abstraction to other cases are essential
The Words for Ideas

• “Generalize”
 – Process to recognize the common idea in two or more situations
 – To *generalize* is to express an idea, concept, or process that applies to many situations
 – The statement that sums up that idea is called a *generalization*
 – If it is true most of the time, we can generalize an idea
The Words for Ideas

• “Operationally Attuned”
 – The ability to apply what we know about how a device or system works to simplify its use
 – Example:
 • We loosen lids by turning it left and tighten by turning it right
 • We know this intuitively, but knowing it explicitly makes us operationally attuned

• With computing, thinking about how computation works makes it simpler to use
The Words for Ideas

• “Mnemonic”
 – A mnemonic is an aid for remembering something
 – Example: HOMES (the Great Lakes: Huron, Ontario, Michigan, Erie, and Superior)
 – Mary’s Violet Eyes Make John Stay Up Nights (Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune)
Summary

We learned how to do the following:

– Know the importance of major computing inventions in the last hundred years
– Know and use the right word
– Give informed definitions for common computer terms
– Consider a brief list of “idea” words, such as abstract and generalize.
Chapter 2
Exploring the Human-Computer Interface
Learning Objectives

• Give names to computing features that you know intuitively
• Explain placeholders and the placeholder technique
• Explain how “metaphor” is used in computing
• Describe the desktop metaphor, giving examples of appropriate icons
• Describe the touch metaphor, giving sample motions
• Explain how the desktop and touch metaphors differ
Feedback

• A computer assists us, doing whatever we ask it to do
• We want our “assistant” to report on the progress of the task it is doing
• We need to know that the task was done and when to give another one
• Always expect feedback about what is happening
Feedback

- **Feedback** is an indication that either the computer is still working or it is done.
- Feedback takes many forms:
 - The revision is visible
 - Areas on the screen become highlighted, shaded, gray, underlined, color change, or you might hear a click
Feedback

• Most obvious form of feedback is that the computer is performing a time-consuming operation
 – Cursor is replaced by a different icon
 – Some apps give custom feedback
 – Or use a progress bar to give an estimate on time remaining
Consistent Interface

• Regardless of who makes the software, icons and menus tend to be similar
 – Especially so within a specific company (Microsoft for example)
 – Look for similar menu names, like File and Edit
 – Look for similar functions within the menus, like Cut, Copy, Paste in the Edit menu
Consistent Interface

• Why?
 1. Companies reuse the same code in each of their applications
 2. Aids *you* in learning and using additional applications
 3. Certain operations are so fundamental to processing that all apps just use those operations
Clicking and Blazing

• Consistency provides a strong sense of familiarity with a new application
• With a new app, two important activities are immediately performed:
 – “Clicking Around” to explore the application to see what features are available
 – “Blazing Away” is trying the application in a way you haven’t done so before
New Instance

- Under *File* you usually find a command, *New*
 - *New* creates a “blank” instance of the kind of files the application creates
 - What is “blank information”?
 - An empty structure to hold (record) all of the properties of that file and store its content
 - Example: A new/empty address book entry is ready to hold names, images, and phone numbers about the new individual
New Instance for the Address Book

Figure 2.1 A visual form of a blank instance of contact information from an electronic address book; the instance has structure inside the computer with empty fields, as shown.
Perfect Reproduction

- Computers encode information as a sequence of binary digits, 0’s and 1’s
- Because of the use of two *digits*, we call it digital information
- Using only 0’s and 1’s means that digital information can be perfectly reproduced or replicated

 10010111 10101100 11001010
Exact Duplicate

• A second copy is made simply by duplicating the sequence of 0’s and 1’s
• This is one way digital improves on analog information
 – Analog information comes from or is stored on a continuously variable medium
 – A copy of an image, for example, could come out too dark or too light when compared to the original
The Perfect Reproduction Property of Digital Information

• It also doesn’t matter where the copy came from:
 – Both the original and the copy are the same sequence of 1’s and 0’s
 – Every copy can be made from the last copy, and still be identical to the original!
Copying

• Copy/Paste/Edit
 – *Copy* and *Paste* operations are available in many applications
 – When editing a file, you can either create content from “scratch” or use *Copy/Paste* (*C/P*) to reproduce it from another location
 – *Copy/Paste* is generally faster and less error prone
How We Learn Technology

• Find and ReplaceAll
 – In *Find/Replace* editing operations, the source content to *Find* is identified in the document
 – The target content to *Replace* it with is also identified
 – *Find/ReplaceAll (F/RA)* is an all-at-once version of *Copy/Paste*
 • Use an abbreviation of a long name or title as a placeholder, then use F/RA to put in the correct name all at once!
Placeholder Technique

• Sometimes, the way to use a new technology is not obvious.
• Much of the technology we use we figure out on our own
 – We know intuitively what to do
 – The technology developers did that on purpose!
• Just needs some thought!
Placeholder Technique

• You want to replace every use of etc with etc. to fix the periods you left out.
• But that doubles periods when etc falls at the end of a sentence.
• Replacing .. will break your ellipses.
• So first replace etc. with some unused marker to hide it.
• Replace etc, then replace the marker.
Metaphors

• In computing, a **metaphor** is an icon or image used as representative or symbolic of a computation

• When designers create a technology, they use metaphors to help users know how to operate their devices without reading a manual

• Metaphors are a terrific solution!
The Desktop

- In the ‘70s the first personal computer (the Alto) was developed by Xerox
- It introduced a graphical user interface instead of the (usual) text user interface
- Since the Alto was designed for office use, the metaphor that was used for the screen was *desktop*
 - Other office metaphors: *files, folder, documents*
The Desktop

- Steve Jobs and Steve Wozniak founded Apple and built computers TUIs at first
- Apple Macintosh was first successful GUI PC.
- Extended ideas from Alto with new icons
- Showcased painting and drawing
- Microsoft introduced Windows a year and a half later
More Computer Metaphors

• The Mac first introduced the mouse to the public...another component in desktop metaphor
 – Apple did not invent it
 – Stanford Research Institute invented the mouse in December 1968
 – When introduced, it was stated that they called it a mouse and didn’t know why they didn’t change the name!
Changing Metaphors

• A new idea, the *touch* metaphor
 – Users touch the content, smart phones, tablets, and other mobile devices
 – Example: the Cover Flow mechanism for scanning through a list, using a sweeping motion of the pointer
Touch Metaphor Gestures

<table>
<thead>
<tr>
<th>Gesture</th>
<th>Description</th>
<th>Typical Use</th>
<th>Typical Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sweep or Swipe</td>
<td>Move finger across surface</td>
<td>Scan through a list</td>
<td>Items sweep by, with one selected</td>
</tr>
<tr>
<td>Tap</td>
<td>Light one-finger tap on surface</td>
<td>Select or choose</td>
<td>Item identified</td>
</tr>
<tr>
<td>Double Tap</td>
<td>Light two-finger tap on surface</td>
<td>Launch</td>
<td>Selected item starts</td>
</tr>
<tr>
<td>Drag</td>
<td>Move selected item by pulling</td>
<td>Move item</td>
<td>Item in new position</td>
</tr>
<tr>
<td>Pinch Fingers/Pull Fingers Apart</td>
<td>Contract/expand separation between fingers</td>
<td>Shrink/zoom</td>
<td>Image is resized</td>
</tr>
<tr>
<td>Two-Finger Scroll</td>
<td>Move fingers across surface</td>
<td>Navigation</td>
<td>Move around a clipped image</td>
</tr>
<tr>
<td>Flick</td>
<td>Quick sweep, finger leaves surface</td>
<td>Express acceleration</td>
<td>Sustained sweep</td>
</tr>
</tbody>
</table>
Metaphor Relationships

• The touch metaphor is intended to simplify the use of smartphones and tablets.
• This technology is not new (use of stylus and touch screen interaction at kiosks).
• Touch has no mouse.
• It’s possible to use the touch metaphor with a trackpad or mouse so it is not limited to mobile devices.
Why is *Touch* a Metaphor?

- It’s a way to eliminate the mouse, but…

- It changes how humans *interact* with the computer
 - Scrollbars using the desktop metaphor for moving through a display
 - Small screens don’t have room for scrollbars
 - Direction of motion is opposite between touch and desktop metaphors
Why is *Touch* a Metaphor?

- It changes how humans *interact* with the computer
 - With the touch metaphor, your hands are “on” the content
 - You move the content to where you want it to be
 - With the desktop metaphor you “slide a window over the content”
Summary of Metaphors

• We use technical metaphors daily
 – They are 100 percent synthetic, created by imagination of the developers
 – They are meant to simplify the use of the devices.

• The touch metaphor will not replace the desktop metaphor

• Both have extensively determined how we think and behave with technology
Summary

• We can figure out software because designers use consistent interfaces, suggestive metaphors, and standard functionality

• We should explore a new application by “clicking around” and “blazing away”

• Making exact copies is a fundamental property of digital information that we use daily
Summary

- \textit{Find} and \textit{ReplaceAll} are standard operations that simplify our computer use.
- Metaphors are essential to computer usage because they guide us in learning and using software.
- The desktop metaphor is classic; the touch metaphor is newer; they will co-exist.
Other Stuff

• Msconfig
• What'srunning – See what is currently running, adjust programs that launch at start-up
• Carbonite -- cloud backup service
• Keypass – password vault