
Week 11

FAT32 Boot Sector,

Locating Files and Dirs

1

Classes COP4610 / CGS5765

Florida State University

Outline

� Recap of last week’s lecture

� Introduction to project 3

� Introduction to FAT32

� Starting Project 3� Starting Project 3

� How to parse the boot sector

� More on serialization

� Finding the root directory and files

� Understanding open, close, read, write

2

Recap – Intro to Project 3

and FAT32

3

Project 3

� You will create a user-space utility to
manipulate a FAT32 file system image

� No more kernel programming!

4

FAT32 Manipulation Utility

� open � cd

Utility only recognizes the following built-in
commands:

open

� close

� create

� rm

� size

cd

� ls

� mkdir

� rmdir

� read

� write

5

File System Image

� Manipulation utility will work on a pre-
configured FAT32 file system image

� Actually a file

� File system image will have raw FAT32 data � File system image will have raw FAT32 data
structures inside

� Just like looking at the raw bytes inside of a disk
partition

6

File System Image

� Your FAT32 manipulation utility will have to

� Open the FAT32 file system image

� Read parts of the FAT32 file system image and
interpret the raw bytes inside to service your interpret the raw bytes inside to service your
utility’s file system commands…

…just like a file system!

7

Terminology

� Byte – 8 bits of data, the smallest
addressable unit in modern processors

� Sector – Smallest addressable unit on a
storage device. Usually this is 512 bytesstorage device. Usually this is 512 bytes

� Cluster – FAT32-specific term. A group of
sectors representing a chunk of data

� FAT – Stands for file allocation table and is a
map of files to data

8

� 3 main regions…

FAT32 Disk Layout

Reserved
Region

FAT
Region

Data
RegionRegion Region Region

Disk armTrack

Sector

Reserved Region

� Reserved Region – Includes the boot
sector, the extended boot sector, the file
system information sector, and a few other
reserved sectorsreserved sectors

Reserved
Region

FAT
Region

Data
Region

Boot Sector
FS Information

Sector

Additional
Reserved Sectors

(Optional)

FAT Region

� FAT Region – A map used to traverse the
data region. Contains mappings from cluster
locations to cluster locations

Reserved
Region

FAT
Region

Data
Region

File Allocation Table #1
Copy of File Allocation

Table #1

Data Region

� Data Region – Using the addresses from
the FAT region, contains actual file/directory
data

Reserved
Region

FAT
Region

Data
Region

Data until end of partition

Where to begin?

1. Mount the file system image with the OS
FAT32 driver and take a look around

2. Find the FAT32 spec from Microsoft inside
the image, read itthe image, read it

13

File System Image Mount Example

$> sudo mount -o loop fat32.img /mnt

$> cd /mnt

� fat32.img is your image file

� /mnt is your mounting directory

� Once the file is mounted, you can go into the
/mnt directory and issue all your normal file
system commands like:

� ls, cat, cd, …

14

Hint

� As you work, it might make sense to first take
a look at the raw file system image

� Hexedit to the rescue!

15

Hexedit

$> hexedit [filename]

� View files in hexadecimal or ASCII

Why wouldn’t you want to view the file � Why wouldn’t you want to view the file
system image file in your regular editor?

16

Hexedit

17

Hexedit Line
numbers in

hex

18

Hexedit Content in
hex

19

Hexedit Content in
printable

ASCII

20

Hexadecimal Hints

� Hex is base 16 – one hexadecimal can
represent 0-15

� It takes 4 binary bits to represent values 0-15

� 0000 = 0� 0000 = 0

� 1111 = 15

21

Hexadecimal Hints

� If it takes 4 bits to represent one
hexadecimal number, it takes 8 bits to
represent two hexadecimal numbers

� 8 bits = 1 byte� 8 bits = 1 byte

� Two hex numbers together symbolize one
byte

� That’s why hex numbers are in groups of two

22

Endianness

� FAT32 is represented in little endian byte
order

� Reading left to right, you encounter least-
significant byte first

� What 32-bit number is this? 0x0000040 or
0x40000000?

23

Endianness

� Why are characters in order (readable) if
some numbers are not?

24

Endianness

� You must account for little endianness
across bytes when reading in numbers of
size larger than one byte

� Characters are only one byte, no re-ordering � Characters are only one byte, no re-ordering
necessary

25

Starting Project 3

26

Parse the Boot Sector

� We need to gather important information
about the file system in the boot sector

27

Important Boot Sector Information

� Size of each region

� BPB_BytesPerSec

� BPB_SecPerClus

� BPB_RsvdSecCnt� BPB_RsvdSecCnt

� BPB_NumFATS

� BPB_FATSz32

� Root directory (first directory in tree)

� BPB_RootClus

� Warning: this list is not exhaustive!

28

Important Boot Sector Information

� BPB_BytesPerSector

� Offset 11, size 2 bytes

� 0x0200 = 512

29

Next Steps

� After you have parsed the boot sector and
saved key values, you may want to find the
root directory

� Everything starts here…� Everything starts here…

30

1. Figure out the root directory cluster
number from the boot sector

Finding the Root Directory

31

Finding the Root Directory

� BPB_RootClus

� Offset 44, size 4 bytes

� 0x00000002 = 2

32

2. Figure out where the root directory starts in
the data region, where N=cluster number

� (We just found N=2)

Finding the Root Directory

FirstSectorofCluster = ((N – 2) * BPB_SecPerClus) +

FirstDataSector;

33

Finding the Root Directory

3. Read in the root directory structure located
at the first sector of the root directory cluster

34

Finding the Root Directory

4. Does the root directory span more than one
cluster? Look up the next cluster number
in the FAT.

� Find ThisFATSecNum and ThisFATEntOffset for Find ThisFATSecNum and ThisFATEntOffset for

the current cluster number

� Go to ThisFATSecNum and read the 32-bit

unsigned value starting at offset
ThisFATEntOffset

� FAT will either give you the next cluster number in
the directory or the End of Cluster Chain value

35

What exactly is the FAT?

� Files and directories may span multiple
clusters

� FAT is a database or array of pointers to the
next cluster number of the file or directorynext cluster number of the file or directory

36

Finding the Root Directory

� Next cluster number of root directory in FAT

� EoC=0x0FFFFFF8 – directory does not go on

37

Finding the Root Directory

� Next cluster number of root directory in FAT

� EoC=0x0FFFFFF8 – directory does not go on

38

…otherwise this
would be the
next cluster
number…

Directory Structure

� Each directory is made up of one or more
directory entries that contain

� File name (or sub-directory name)

� Attributes� Attributes

� First cluster number

� Cluster number where file or directory in question starts

� More…

39

Finding Files and Directories

� Files and sub-directory entries can be found
by going to their first cluster number

� Found in the directory entry

40

Finding fatgen103.pdf

� Suppose we have read in the root direcotry
and want to find the file ‘fatgen103.pdf’

41

Finding fatgen103.pdf

� Suppose we have read in the root direcotry
and want to find the file ‘fatgen103.pdf’

Directory entry for

42

Directory entry for
fatgen103.pdf

Finding fatgen103.pdf

� Entry’s first cluster number

� 0x000011 = 17

43

High word Low word

Finding fatgen103.pdf

� Plug N=17 into FirstSectorofCluster

equation, go to that sector…

44

Finding fatgen103.pdf

� Does the file continue after this cluster?

� Look up current cluster number 17 in FAT…

Continues to
cluster 0x12=18!

45

Summary of Finding Files/Dirs

1. Find first cluster number in directory entry of
interesting file or directory

2. Figure out the sector to read using cluster number
and FirstSectorofCluster equation

Read that cluster3. Read that cluster

4. Figure out if file or directory continues past cluster
by looking up FAT[current cluster number]

� If EoC mark stop

� Else go to 3 with cluster=FAT[current cluster number]

46

File System Utility

Operations

Open, Close, Read, Write

47

Starting our Utility

$>./fat32_reader fat32.img

/]

Fat32_reader is name of our utility� Fat32_reader is name of our utility

� Should return a different prompt (like “/]”) to
symbolize that user is inside utility

48

Handling Open Files

� An open file is a file we allow I/O operations
to be performed on

� read

� write� write

� To handle open files, we must maintain a
table of files that are open

Opening Files

/] open “fatinfo.txt” rw

� If “fatinfo.txt” is found in the current
directory, open “fatinfo.txt”directory, open “fatinfo.txt”

� In order to find fatinfo.txt, you must be able to
interpret the current directory and determine
whether fatinfo.txt is part of that directory

� Once you open fatinfo.txt, store its name (at
least) in the open file table

I/O on Open Files

/] read “fatinfo.txt” 0 100

� Only allow the read if fatinfo.txt is open

In order to read fatinfo.txt, you must look � In order to read fatinfo.txt, you must look
into the open file table, look up the address
of fatinfo.txt (or store it with its name), and
read enough of the data clusters to satisfy
the read request

I/O on Open Files

/] write “fatinfo.txt” 0 “Hello”

� If write stays within the cluster
� Just write data

� If write goes beyond cluster� If write goes beyond cluster
1. Find a free cluster, remember as

next_cluster_number
2. Change FAT[current_cluster] from EoC to

next_cluster_number
3. Change FAT[next_cluster_number] to EoC
4. Write the data in the cluster next_cluster_number

52

Closing Files

/] close “fatinfo.txt”

� Remove this file’s entry from the open file
tabletable

53

To Do

� Write code to parse the boot directory

� Cannot go anywhere without this code

� Write code to open and close files

� Write code to read directories and files� Write code to read directories and files

� Try writing to files and directories

54

Next Time

� Discussion of other file operations

55

