UNI CS 1510 (Fall 2019)
Introduction to Computing, Sections 01–06

Course Syllabus (Version 1.0)

<table>
<thead>
<tr>
<th>Lecture (Sections 01-03):</th>
<th>MWF 9:00am–9:50am</th>
<th>328 ITTC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture (Sections 04-06):</td>
<td>MWF 11:00am–11:50am</td>
<td>328 ITTC</td>
</tr>
<tr>
<td>Lab (Sections 02, 05):</td>
<td>Th 8:00am–9:50am</td>
<td>112 Wright</td>
</tr>
<tr>
<td>Lab (Sections 03, 06):</td>
<td>Th 10:00am–11:50am</td>
<td>112 Wright</td>
</tr>
<tr>
<td>Lab (Sections 01, 04):</td>
<td>Th 3:30pm–5:20pm</td>
<td>112 Wright</td>
</tr>
</tbody>
</table>

Contact Information

Lead Instructor
Sarah Diesburg – sarah.diesburg@uni.edu
Office: 311 ITTC Building
Office hours: MWF 10:00am-11:00am, Th 1:00pm-4:00pm, and by appointment.
Class website: Available through UNI eLearning: https://elearning.uni.edu

Lab Instructor
Mark Jacobson
Office: WRT 338a

Course Description

As the name implies, CS 1510 is the computer science department’s introductory course. While it is the first course in the programming sequence for majors it is appropriate for non-majors and it does NOT assume that you have programming experience.

This course has two primary goals:
- First, to introduce the general field of computer science. We hope that you will leave this course with a sense of what computer science is and what computer scientists do.
- Second, to introduce the concept of programming. Programming is the way that computer scientists express their ideas and implement solutions to problems. Even if you never "program for a living", you will need to know how to program in order to appreciate the ideas you learn and to work in the industry.

Outcomes

While a major goal of this course is to provide a good start to the development of programming skills, the course is not solely about programming. Upon successful completion of the course students should have gained the following skills and proficiencies:

- general computer & OS usage;
- computer operation;
- a mental model of how programs are executed
- machine capabilities and functions
- a variety of incidental knowledge/understanding.
- general program design;
- standard approaches to common (simple) tasks;
- abstraction (data, procedural, thinking);
- data & problem representation;
- elementary data structures;

Additionally, you should develop skills and understanding that will ultimately allow you to analyze complex problems and apply your knowledge and experience to developing good solutions to them. Programming is a
creative process. However, to exercise that creativity, one must learn basic tools and principles. That is the purpose of this course.

Course Material
- Lecture notes (posted on the class Web site)
- Follow these directions to obtain access to your mandatory online textbook:
 - Sign in or create an account at http://learn.zybooks.com
 - Enter zyBook code: UNICS1510DiesburgFall2019
 - Subscribe

Tentative Schedule (Subject to Change)

<table>
<thead>
<tr>
<th>Date</th>
<th>Topics/Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>8/26 – 9/4</td>
<td>Computer Basics, Numerical Representation</td>
</tr>
<tr>
<td>9/4 – 9/9</td>
<td>Intro to Basic Python</td>
</tr>
<tr>
<td>9/11 – 9/16</td>
<td>Booleans, Conditionals, Selection Statements</td>
</tr>
<tr>
<td>9/18 – 9/27</td>
<td>Repetition</td>
</tr>
<tr>
<td>10/2 – 10/11</td>
<td>Basic Strings</td>
</tr>
<tr>
<td>10/16</td>
<td>Concepts Exam #1 in SAB 102</td>
</tr>
<tr>
<td>10/17</td>
<td>Programming Exam #1 in WRT 112</td>
</tr>
<tr>
<td>10/18 – 10/21</td>
<td>File Basics</td>
</tr>
<tr>
<td>10/23 – 10/28</td>
<td>Functions</td>
</tr>
<tr>
<td>10/30 – 11/4</td>
<td>Basic Lists</td>
</tr>
<tr>
<td>11/6 – 11/15</td>
<td>Functional Decomposition / Design</td>
</tr>
<tr>
<td>11/18 – 11/22</td>
<td>Dictionaries</td>
</tr>
<tr>
<td>12/2 – 12/9</td>
<td>Sets, Searching & Sorting Algorithms</td>
</tr>
<tr>
<td>12/12</td>
<td>Programming Exam #2</td>
</tr>
<tr>
<td>12/17 or 12/18</td>
<td>Final: Concepts Exam #2 in SAB 102</td>
</tr>
</tbody>
</table>

For your specific final date and time, please consult the registrar’s final calendar at: https://registrar.uni.edu/calendars/final-examination-schedule

Computing Environment

Class Website: Most course materials will be made available on the course web page during the semester. You are responsible for checking this site frequently for reading assignments, prep activities, lecture notes, announcements and supplemental class materials.

Computer Labs: The following labs have pre-configured software for this class:

- **Wright 112** – This is where you will meet for your lab sessions. This is a public lab part of the week but it also used by other classes at other times of the day/week and may not always be available. It generally closes at 5pm on weekdays.
- **Wright 339** – This lab is open the latest on weekdays (until 9:00pm or so).
- **ITTC 335** – This is a small general purpose lounge available to students in the CS department. This is a good
place to get a quick printout or check your email between classes. It generally closes at 5pm on weekdays (or when the last faculty member leaves).

Working on your own laptop/computer: You are actually encouraged to work on your own laptop or computer. Having your own computer will greatly aid you in the computer science major, and the computer/laptop itself does not have to be very expensive. The class software is free and will work with Windows, OSX, and Linux. Python and IDLE are easily downloaded from www.python.org. You should download the latest edition of version 3 (NOT version 2).

Whether you work in the labs or from home, you will need to have Internet access to submit your assignments.

Course Structure and Grading Policies

Grade Determination

The final grade you earn in this course will be based on the points accumulated over five activities as described below.

<table>
<thead>
<tr>
<th>Activity</th>
<th>Quantity</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab Work</td>
<td>13 @ 10 pts each</td>
<td>130</td>
</tr>
<tr>
<td>Individual Homework</td>
<td>11 @ 25 pts each</td>
<td>275</td>
</tr>
<tr>
<td>Concept Exams</td>
<td>125 and 150 points</td>
<td>275</td>
</tr>
<tr>
<td>Programming Exams</td>
<td>2 @ 125 pts each</td>
<td>250</td>
</tr>
<tr>
<td>zyBook Participation Activities</td>
<td>70 pts</td>
<td>70</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>1000</td>
</tr>
</tbody>
</table>

To continue on to the next class in the computer science major, you must earn at least a C.

The grading scale is as follows:

- 100 – 92 A
- 91.9 – 90 A-
- 89.9 – 88 B+
- 87.9 – 82 B
- 81.9 – 80 B-
- 79.9 – 78 C+

Class attendance is required. If you miss a class, it is your responsibility to find out what was covered.

ZyBook Participation and Challenge Activities

Your textbook is an interactive online textbook. You will be graded for completing participation activities before class on the day they are assigned. Again, participation activities are due before class. Challenge activities are not graded. They are good practice, and we will often go over them in class as sample problems.

In-lab work

Lab is designed to be a time to allow you to learn new skills, apply and practice existing skills, and prepare yourself for the upcoming lectures and programming assignment. Points for these activities will be assigned based on the level of difficulty for each activity and will be awarded for successful completion and/or effort.

Attendance to lab sessions is required - you will receive credit only for labs you attend. In general, students who do not show up at all will not receive credit for making up the lab (although you should still complete the activities so you do not fall behind).
Programming Assignments
Programming assignments are designed to take what you have learned in lab and during lecture, and apply these skills to a program on a scale larger than that explored in-lab. It is expected that you will complete all assignments as an individual unless otherwise instructed (see section on scholastic conduct). If you have questions concerning an assignment, feel free to consult an instructor, come to office hours, or consult a class TA.

All assignments are due at their assigned date and time. Assignments can be submitted a maximum of two days late, and each day late incurs a 10% penalty. Assignments will be submitted on the Autolab grading system. Using the grading system, you can get immediate feedback and resubmit non-working code.

Exams
There are a total of four exams this semester.
• Two will be concept exams offered during the lecture part of the course.
• Two will be programming exams offered during the lab portion of the course.

By default these exams are closed-book/closed-notes exams. The dates of these exams are listed on the class schedule. You are expected to be present for these exams unless you have made prior arrangements. Make-up exams will be offered under very limited circumstances. If you are aware of conflicts prior to the exam, please bring these to my attention as early as possible.

Missing Labs or Exams
If you need to miss a lab or exam, it is YOUR RESPONSIBILITY to let me know BEFORE the time of the lab or exam. Example: Student A is sick and emails me the morning of the lab that he or she cannot make it. Student B just skips lab, and emails me a week later that he or she was sick and needs to make up the lab. Since student B did not follow the rule and show responsibility, student B cannot make up the lab.

Incompletes
Incompletes are awarded only in very rare instances when an unforeseeable event causes a student who has completed all the coursework to date to be unable to complete a small portion of the work in the last week or two of the semester (typically the final project or exam). Incompletes will not be awarded for foreseeable events including a heavy course load or a poorer-than-expected performance. Verifiable documentation must be provided for the incomplete to be granted.

Scholastic Conduct
Since cheating definitions and academic ethics policies are often written for other types of classes, you might tend to wonder how those translate to a computer science course. You may be surprised to hear there are many ways to write a program to solve a specific problem. This is very similar to how there are many different ways to write an essay addressing a particular topic. After a certain point in the course, I will be using plagiarism-detection software to detect similarities that are very unlikely to occur if students were working alone.

Additionally, you need to cite your source if you seek and use help found on the Internet (much like citing a source in an essay course). To do this, you need to put the URL and a brief description of the help you found in a comment directly above the affected block of code. I will show you how this is done further along in the class. However, if you do use code from the Internet, I reserve the right to ask you how it works line-by-line. If you cannot explain it to me, I will not give you credit for that part of the assignment. In other words, if you use help or code found on the Internet, you must cite it and fully understand it. It is usually better to try to figure things out on your own than to use something you don’t understand.

In this class, homework assignments must be done on your own as your own individual work. However, this does not mean that you cannot ask for help. Here are some general guidelines for keeping out of trouble.

If you are seeking help from a classmate:
• DO NOT ask to see their code or look at their code.
• DO explain your thought process and where you are stuck in words.
- DO draw diagrams on the board.

If you are helping another classmate:
- DO NOT show them your code.
- DO NOT directly modify their code.
- DO try to help them in words, similar examples from lectures and labs, and diagrams.

If I suspect a case of plagiarism or cheating, I will notify the student via email and allow the student to come in and explain what happened. If I determine that plagiarism or cheating has taken place, the following possible sanctions will occur (in accordance with UNI Academics Ethics Policies found at http://www.uni.edu/policies/301). The following list does not list all possible academic ethics violations, and it is your responsibility to be familiar with the full list (again, http://www.uni.edu/policies/301).

<table>
<thead>
<tr>
<th>Policy Violation</th>
<th>Examples</th>
<th>Possible Sanctions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level One</td>
<td>Working with another student on a homework assignment or a lab when the instructor has not explicitly authorized collaborative work. • Failure to properly cite once in a paper, programming assignment, or project.</td>
<td>Written warning in email. • Giving no credit for the assignment; course grade determined in the usual manner. • Reprimanding the student in writing in the form of a letter (permanent record, not visible to others).</td>
</tr>
<tr>
<td>Level Two</td>
<td>Failure to properly cite more than once in a paper, programming assignment, or project. • Copying on an examination. • Giving unauthorized assistance to someone during an exam.</td>
<td>No credit for the assignment; course grade determined in the usual manner. • No credit for the assignment; reduction in course grade. • Reprimanding the student in writing in the form of a letter (permanent record, is visible to others).</td>
</tr>
<tr>
<td>Level Three</td>
<td>Using prohibited materials during an exam. • Acquiring or distributing exam questions from an unauthorized source. • Acquiring or distributing an exam answer key from an unauthorized source • Plagiarism on a large class project or assignment that affects a major or essential portion of work done to meet course requirements or else assisting others to do the same.</td>
<td>Disciplinary failure for the course. (This will appear on the student’s transcript.) • Reprimanding the student in writing in the form of a letter (permanent record, is visible to others).</td>
</tr>
<tr>
<td>Level Four</td>
<td>Taking an exam for someone else or having someone else take an exam for you. • Repeated lower level violations such as fourth Level One, third Level Two or second Level Three violation.</td>
<td>Permanent expulsion from the University and a notation of “academic disciplinary separation” on the student’s transcript. • Reprimanding the student in writing in the form of a letter (permanent record, is visible to others).</td>
</tr>
</tbody>
</table>

Remember: Discussing assignments is good. Copying code or answers is not.
Accessibility
Please address any special needs or special accommodations with me at the beginning of the semester or as soon as you become aware of your needs. Those seeking accommodations based on disabilities should contact Student Accessibility Services (SAS). Please feel free to contact the SAS staff at accessibilityservices@uni.edu or at (319) 273-2677 (for deaf or hard of hearing, use Relay 711). SAS is located in ITTC 007.

The Learning Center @ Rod Library syllabus statement
All students are encouraged to use The Learning Center @ Rod Library for assistance with writing, math, science, and college reading and learning strategies. Beginning week two, The Learning Center (TLC) operates on a walk-in basis and is open 10:00 am to 10:00 pm Monday through Thursday. For more information, go to https://tlc.uni.edu/tutoring, email TheLearningCenter@uni.edu, call 319-273-6023, or visit the TLC desk located on the main floor of Rod Library. If you are unable to come in during normal tutoring hours, online tutoring is available through Smarthinking. You will need your CATID and passphrase to gain access. To access the Smarthinking platform go to https://tlc.uni.edu/schedule.