Programming Methodolbgy ’ | 145

The programming process consists of a roblém-solving '-
'mlplementation phase. In Chapter 1 we disli:ussed some suitlglgli&;iefjf Sof‘f
ing problems, and in Chapter 2 we saw how some simple programs are
melemer_fted. Here we describe a methodolagy for developing data models
ax%d algorithmic solutions for more complex problems. This methodolo
will help you write algorithms that are easy to implement as Ada pmgrangl}sr

and, consequently, programs that are readab]
o g e adable, understandable, and easy to

Top-Down Design

T}?e tec}-mique we use is known as top-down design (it's also called step-
wise refinement and modular programming), It allows us to use the divide-
and-conquer approach that we talked about in Chapter 1. ~

Top-down design A technique for developin, i i

op : : g & program in which the problem is
divided into more easily handled subproblems th i oh
solution to the overall problem, d - e S‘OIHUOHS of which eroate a

In top-down design, we work from the abstract (allist of the maj
. _ major part
of a solutlon) to the. particular (data types and algorithmic steps thzzt f:ai bg
translated directly into Ada code). You also can think of this as working

from a high-level solution th

b at leaves the detai i {01
unspecified down to a fully detailed solution, eils of implementtion
oy ?:nglizsisi wail’to sol%rfl a problem is to give it to someone else and
ay, problem.” This is the most abstract level of
tion—a single-statement solution tha os o e om solu-

: gl t encompasses the enti
without specifying any of the details of i o at e
_ lementation, It’ i i
that programmers are called in. Our jab § o b, Stract ol Point
. Our job i ution i

2 concrmts solution e meae: JOb 1s 1o turn this abstract solution into

146 l Chapter 3 / Input and Design Methodology

We start by breaking the solution into a series of major steps. In the
process, we move to a lower level of abstraction—some of the implementa-
tion details are now specified. Each of the major steps becomes an inde-
pendent subproblem that we can work on separately. In a very large
project, one person (the chief architect or team leader) would formulate

the subproblems and then give them to other members of the programming

team, saying “Solve this problem.” In the case of a small project, we just

i
3
t

give the subproblems to ourselves. Then we choose one subproblem at a

time and break it into another series of smaller subproblems. The process
continues until each subproblem can be solved directly. '

Why do we work this way? Why not simply write out all of the details?

Because it is muc_h sasier to focus on one problem at a time. For example,
suppose you are working on a program to print out certain values and dis-

cover that you need a complex formula to calculate an appropriate width

parameter for one of them. Calculating widths is not the purpose of the

program. If you shift your focus to the calculation, you are more likely to-

forget some detail of the printing process. What you do is write down an
abstract step—“Calculate the width required”—and go on with the prob-
lem at hand. Once you've completed the general solution, you can go back
to solving the step that does the calculation. ' :

By subdividing the problem, you create a hierarchical structure called -

a tree structure. Each level of the tree is a complete solution to the problem
that is less abstract than the level above it. Figure 3-4 shows a solution tree
for a problem. Steps that are shaded have enough implementation dstails
,specified to be translated directly into Ada statements, These are concrete
steps. Those that are not shaded are abstract steps; they reappear as sub-
problems in the next level down. Each box represents a module. Modules
are the basic building blocks of top-down solutions. The diagram in Figure
3-4 is also called a module structure chart.

Concrete step A step for which the implementation details are fully specified.
Abstract step A step in-which some implementation details remain unspecified.

Madule A self-contained cellection of steps that solves a problem or subproblem;
can contain both conerete and abstract steps.

Programming Mathodology

147

T FIGURE 3-4 3
Hierarchical Sclution Tree

Lavel 0

Top - Solve the problem
Step X
Step II
- Step HOE
!
Subproblem 1
I]
Step A
© "Step B
;]
Subproblem B ’ Subproblem G
i . .

Suhpwlblem A

] Level 1
. 'Subproblem I
I

Step2
. Blep.3

Bottom

Abstract

S ¥

Concrate

148 f Chapter 3 / Input end Design Methodology

Modules A module begins life as an abstract step in the next higher level
of the solution tree. It is completed when it solves a given subproblem:
when it specifies a series of steps that does the same thing as the higher-
level abstract step. At this stage a module is functionally equivalent to the
abstract step.

Functional equivalence A property of a module—it performs exactly the same
operation as the abstract step it defines, A pair of modules are functionally equiva-
lent to each other if they each accomplish the same abstract operation,

A properly designed module contains only concrete steps that directly
address the given subproblem and abstract steps for significant new sub-
_ problems. This is called functional cohesion. The idea behind fanctional
cohesion is that each module should do just one thing and do it well.
Functional cohesion is not a well-defined property; there is no quantitative
measure of cohesion, It is a product of the human need to organize things
into neat chunks that are easy to understand and remember. Knowing
which details to make concrete and which details to leave abstract is a mat-
ter of experience, circumstance, and personal style. For example, you
might decide to include a field width calculation in a printing module, if
there isn’t too much detail in the rest of the module so that it becomes con-
fusing. On the other hand, if the calculation is performed several times, it
makes sense to write it as a separate module and just refer to it each time
you need it. ' :

Functional cohesion A property of a module in which all concrste steps are
directed toward solving just one problem, and any significant subproblems are
written as abstract steps.

|
e

150 Chapter 3 / Input and Design Methodology

Writing coheswe modules Here s one approach to wmtmg modules that
-are coheswe

1. Think about how you Would solve the subproblem by hand.

2. Begin writing down the major steps.

3.. [Ifastep is simple enough so that you can see how to implement it

" directly in Ada, it is at the concrste level; it doesn’t need any further
refinement.

4, If you have to think about implementing a step as a series of smaller
steps or as several Ada statements, it is still at an abstract level.

5. If you are trying to write a series of steps and start to feel
overwhelmed by details, you are probably bypassing one or more
levels of abstraction. Stand back and look for pieces that you can
write as more abstract steps.

We could call this the “procrastinator’s technique.” If a step is cumber-
some or difficult, put it off to a lower level; don’t think about it today,
think about it tomorrow. Of course tomorrow does come, but the whole
process then can be applied to the subproblem. A trouble spot often seems
much simpler when you can focus on it. And eventually the whole prob-
lem is broken down into manageable units,

— fl"fcl ;.JU‘E.T imducﬂe,@"‘“

lv 50 Condin Mé-ée
As you work your way down the solution tree, you make a series of
design decisions. If a decision proves awkward or wrong (and many times
it willl), it’s easy to backtrack (go back up the tree to a hlgher-level mod- .

ule) and try something else. You don’t have to scrap your whole design—
only the small part you are working on. There may be many intermediate
steps and trial solutions before you reach a final design. .

The modules developed for the case studies thronghout this book ars
presented as though we wrote them down that way the first time. Nothing
could be further from the truth! The designs shown are the final product of
a long process of trying and discarding many different ones. To show all of
the intermediate attempts we made would easily double the size of this
text. So don'’t hesitate to throw out a design and begin again. And don't be
discouraged if it takes you a number of attempts to achieve a design. The
problem-solving phase of the programming process takes time. If you
spend the bulk of your time analyzing and designing a solution, coding
and implementing the program will take very little time.

You'll find it easier to implement a design 1f you write the steps in

" pseudocode. Pseudocods is a mixture of English statements and Ada-like

control structures that can easily be translated into Ada. (We've been using
pseudocode in the algontbms in the Problem-Solving Case Studies.) When .
a concrete step is written in pseudocode, it should be possible to rewrite it
directly as-a statement in a program.

