
Projects Introduction 



A lot to go over today… 

• History of Linux 
• Projects Overview 
• Project partners 
• Programming environment 
• Programming language 
• Useful Tools 



History of Linux 



The Beginning: Unix 

• First implemented in AT&T Bell Labs, 1969. 
• AT&T had to make a choice between using third 

party OS or developing their own. 
– Chose to implement own OS. 

• Born from ideas and work performed on MULTICS 
OS. 

• As a result of work on Unix (first implemented in 
the assembly language), C was born. 



Time Line of Feature Introduction 

• B-compiler, UNIX v1 – 1971 
– cat, chdir, chmod, chgrp, ed, mkdir, mkfs, mv, 

rm... 
• C-compiler, Pipes, UNIX v3 – 1973. 
• UNIX v5, open-sourced – 1974. 
• sh, System V v1, UNIX v7. - 1979 
• UNIX v10 (last edition) - 1989  
• Somewhere between 1979 and 1989... 

– NFS, TCP/IP, STREAMS... 



Standardizing UNIX – IEEE and 
POSIX 

• POSIX – Portable Operating System Interface for 
Computing Environments 

• What does this mean? 
– You can count on any modern operating system to 

adhere to this standard. 
– As long as you develop your programs by using 

functions available in the POSIX standard, 
“unistd.h”, your program will be portable to 
POSIX-compliant systems. 



What's Included in the Standard? 

• 1003.1 – System calls, library routines 
• 1003.2 – Shell, basic UNIX (command-line) 

utilities 
• 1003.3 – Test methods to demonstrate 

conformance 
• 1003.4 – Real-time interfaces 



Linux – Humble Beginnings 
• Shortly after the final version of UNIX was produced, 

Linus appeared and published the first version of Linux. 
• No OS at the time supported the Intel 80386 32-bit 

processors – Linus wanted to use his PC with that 
processor. 

• It supported only his hardware – AT hard disks, Intel 
80386. 

• Since he was working on MINIX, some of the design was 
based off of MINIX. 

• Started by porting bash(1.08) and gcc(1.40).  
• For more details, refer to wikipedia or the book: Just for 

Fun. 



Linux Today 

• Current kernel version 3.12.6 (as of last 
week) 

• Supports pretty much any platform and 
device the average user will interact with. 
Released to users as distributions, of which 
there are more than a hundred. 



Distributions 
• Ubuntu, Fedora, Slackware, SUSE, Red Hat, Debian, Gentoo, 

Mint, CentOS – all of these are distributions. 
• Differences between distributions: 

– Package manager: aptitude, yum, portage, etc. 
• Used to install programs, libraries, 

documentation. 
– Kernel version: most are behind a few cycles 
– Windowing Interface: Gnome, KDE, etc. 
– Target audience: power-user, newbie, enterprise, etc. 
– Community 



Which Distribution (Distro) to Use? 

• The best advice I can give here is to use what you 
feel most comfortable using. 

• If you haven't installed Linux on your computer 
before, maybe this class is the best time to give it a 
try! 

• Other reasoning to choose one distribution over 
another: 

– Local standard - Colleagues/coworkers all use 
same distribution. 



Additional References 

• http://www.lwn.net/ 
– Linux news site. Covers distros, conferences, 

and recent kernel development. Includes 
many links to free books, documentation, and 
the like. 

• http://www.kernel.org/ 
– Here's where you can obtain the latest Linux 

kernel, if you want to get your hands dirty. 

http://www.lwn.net/
http://www.kernel.org/


Why Use Linux? 

• Linux is open source 
• We actually have access to the kernel code 

and can change it 
• Much of the Internet runs on UNIX/Linux! 

• Wonderful time to get some experience 



Unix/Linux Share 

• Desktop/laptop – Linux 1.73%  
• Mobile Devices – Android 79.0% 
• Servers – Unix-like/Linux 66.8% 
• Supercomputers – Linux 96.4-98% 

 
Source: 
http://en.wikipedia.org/wiki/Usage_share_of_operatin
g_systems#Servers 

http://en.wikipedia.org/wiki/Usage_share_of_operating_systems%23Servers
http://en.wikipedia.org/wiki/Usage_share_of_operating_systems%23Servers


Projects 



Roughly Three Projects 

• Write your own shell 
• Interface to the operating system 

• Compile and modify an operating system kernel 
• Will have team virtual machines 

• Create a program to read raw FAT file system 
images 
 



Projects: Partners 

•Projects will be completed in pairs 
•Choose a partner and send me an email 
(diesburg@cs.uni.edu) with the name of your 
partner by 1/22. 
•You need only submit one project per group 
•Post on the eLearning forum to find a partner 
with compatible/complimentary skills and 
schedule 
 

mailto:diesburg@cs.uni.edu


Demos 

• Halfway Demo 
• Make sure you are on track 
• Chance for me to give you pointed help 

• Final Project Demo 
• Demonstrate your project to me for points 
• I might ask either team member to describe 

code and design decisions 



Programming Project 

• Start projects when they're assigned. 
– They're often trickier than they look. Especially that 

synchronization project... 
• Ask questions early. 

– If you're asking questions, be it to yourself or to others, 
you're thinking about the project. This will make it easier 
to complete them correctly and on time. 

• Write small programs to test your program or language 
features you don't understand. 

 



Programming Environment 

• Project 1 and Project 3 
• Remote Linux servers 
• Accessible through ssh and server address 

diesburg.cs.uni.edu 
• Project 2 

• Your own team virtual machines 



Accessing the Remote Servers 

• 4 Linux Servers at server address 
diesburg.cs.uni.edu 

• Need usernames and passwords distributed in 
class 

• If you are unfamiliar accessing remote Linux 
servers, please watch this video posted on today’s 
webpage 
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Internet 

diesburg.cs.uni.edu 

prog1 prog2 prog3 

prog4 

Server Visualization 



• Use SSH to connect to “diesburg.cs.uni.edu” 
• Secure SHell 
• If in Linux or OSX 

• Open up a command-line terminal 
• $> ssh <username>@diesburg.cs.uni.edu 

• If in Windows 
• You will need a terminal emulator 
• PuTTY (download from link on resrouces 

page) 
23 

Logging In 
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PuTTY 



• You will be logged onto the prog1 machine 
• But 3 other machines are at your disposal (prog2, prog3, prog4) 
• Might want to log into those machines if usage is too high 
• Can see the current system load and number of users by issuing the 

command ‘w’ at the prompt 

• Going to another machine 
• At the prompt, use the ssh command: 
• $> ssh <username>@prog[2-4] 

 
• Example: 
• $> ssh diesburg@prog2 
• Use the same password that you used initially.  Your files will be visible 

on all the machines 
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Once I am Logged In 



• Change your password to something you can 
remember 
• $> passwd 

• Get familiar with Linux shell commands 
• Look at course “Resources” page under “Shell Resources” 
• Know at least the following 

• Maneuvering: cd, ls, pwd 
• Creating/deleting: touch, rm, rmdir, mkdir 
• Reading files: nano 
• Compilation: make, gcc 
• Packaging: zip, unzip 
• Help: man 26 

Next Steps 



• Two ways 
• Create and edit files on your own computer, then transfer to Linux 

server 
• Create and edit files directly on Linux server 

 
• I highly recommend the second way! 

• File encodings from other operating systems can negatively effect 
compilations and cause very confusing errors 

• It’s not too bad, just pick a terminal editor 
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Editing Source Files 



Editors -- Vim 

• The vi editor was created by Bill Joy, the 
founder of Sun Microsystems when he was 
a graduate student 

• The vim editor, vi improved, is the Linux 
version of the vi editor  
– multiple windows, highlighting text, and 

command history 

• http://www.vim.org/ 
 



Editors -- Emacs 

• GNU Emacs is an extensible, customizable text 
editor 
– Content-sensitive editing modes, including syntax 

coloring, for a variety of file types including plain 
text, source code, and HTML 

• http://www.gnu.org/software/emacs/ 



Editors -- Others 

• Nano and/or pico are also available on most 
Linux systems 

• If you have never worked in Linux before, this 
is your editor! 
– Extremely basic 
– $>nano <file name> 



• In Linux/OSX 
• scp 

• In Windows 
• File transfer client like WinSCP 

• From prog1 
• wget 

31 

Transferring Files 
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WinSCP 



Programming Language 

• C is the programming language of operating 
systems 

• Kernel, system utilities, and large server 
programs (like apache and sendmail) 

• Need to understand C to work inside the Linux 
kernel 

• Will get practice with C in project1 
• I will help, but you also need to get yourself 

up to speed with the basics 



Quick C Language Tutorial 

• Look in resources 
 



Compiling 

• Video 
• $> gcc myfile.c –o myfile 

• gcc is the compiler 
• myfile.c contains my source code.  It could be 

called anything as long as it ends with .c 
• -o is the output flag – the file that follows this 

flag will be the output executable 
• myfile – this is the output executable.  Can be 

called anything   



Running your executable 

• $> ./myfile 
• ./ means “here” (will make more sense once 

we start the shell project 
• myfile is the name of the executable that you 

compiled 
 



Part of Homework 1 (Due next Wed) 

• Log onto the class servers 
• Go through the online C tutorial 
• To test your knowledge, create and compile a C 

program on the servers that 
1. Takes as input a string of up to 100 characters 
2. Counts every letter in the string 
3. Prints the letter occurrances 

 
(Hint – hash tables aren’t part of the C standard 
library) 



Useful Tools 



manpages 
• Extensive documentation that come with almost all 

Unix-like systems 
• For documentation on C functions or packages 
• Examples 

– $> man bash 
– $> man strncpy 

• Sometimes multiple definitions, so use man section 
numbers 
– ‘man 1 printf’ shows bash printf 
– ‘man 3 printf’ shows C printf  

• For more information on sections, see ‘man man’ 



zip 

• Creating a zip file from folder proj1, which 
contains your source files: 
• $> zip –r proj1.zip proj1 

• Unzipping a zip file 
• $> unzip proj1.zip 
 

• Test this out before you submit a project! 
 



Make 

• make: A program for building and maintaining 
computer programs 
– developed at Bell Labs around 1978 by S. Feldman 

(now at Google) 

• Instructions stored in a special format file 
called a “makefile”. 

• Will be provided for you for the first and 
second projects 



Debuggers 
• Debuggers let you examine the internal workings 

of your code while the program runs. 
– Debuggers allow you to set breakpoints to stop the 

program's execution at a particular point of interest 
and examine variables. 

– To work with a debugger, you first have to recompile 
the program with the proper debugging options. 

– Use the -g command line parameter to cc, gcc, or g++ 
• Example: gcc -g -c foo.c  



GDB, the GNU Debugger 

• Text-based, invoked with: 
  gdb [<programfile> <corefile>|<pid>]] 

• Issue ‘man gdb’ for more info 



$> ./my.x 

$> Segmentation fault 

$> gdb ./my.x 

(gdb) run 

… Segmentation fault 

0x08048384 in main() at my.c:4 

4                *s = 'H'; 

(gdb) bt  

#0 0x08048384 in main() at my.c:4 

GDB Quick Start 
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