
Projects Introduction

A lot to go over today…

• History of Linux
• Projects Overview
• Project partners
• Programming environment
• Programming language
• Useful Tools

History of Linux

The Beginning: Unix

• First implemented in AT&T Bell Labs, 1969.
• AT&T had to make a choice between using third

party OS or developing their own.
– Chose to implement own OS.

• Born from ideas and work performed on MULTICS
OS.

• As a result of work on Unix (first implemented in
the assembly language), C was born.

Time Line of Feature Introduction

• B-compiler, UNIX v1 – 1971
– cat, chdir, chmod, chgrp, ed, mkdir, mkfs, mv,

rm...
• C-compiler, Pipes, UNIX v3 – 1973.
• UNIX v5, open-sourced – 1974.
• sh, System V v1, UNIX v7. - 1979
• UNIX v10 (last edition) - 1989
• Somewhere between 1979 and 1989...

– NFS, TCP/IP, STREAMS...

Standardizing UNIX – IEEE and
POSIX

• POSIX – Portable Operating System Interface for
Computing Environments

• What does this mean?
– You can count on any modern operating system to

adhere to this standard.
– As long as you develop your programs by using

functions available in the POSIX standard,
“unistd.h”, your program will be portable to
POSIX-compliant systems.

What's Included in the Standard?

• 1003.1 – System calls, library routines
• 1003.2 – Shell, basic UNIX (command-line)

utilities
• 1003.3 – Test methods to demonstrate

conformance
• 1003.4 – Real-time interfaces

Linux – Humble Beginnings
• Shortly after the final version of UNIX was produced,

Linus appeared and published the first version of Linux.
• No OS at the time supported the Intel 80386 32-bit

processors – Linus wanted to use his PC with that
processor.

• It supported only his hardware – AT hard disks, Intel
80386.

• Since he was working on MINIX, some of the design was
based off of MINIX.

• Started by porting bash(1.08) and gcc(1.40).
• For more details, refer to wikipedia or the book: Just for

Fun.

Linux Today

• Current kernel version 3.12.6 (as of last
week)

• Supports pretty much any platform and
device the average user will interact with.
Released to users as distributions, of which
there are more than a hundred.

Distributions
• Ubuntu, Fedora, Slackware, SUSE, Red Hat, Debian, Gentoo,

Mint, CentOS – all of these are distributions.
• Differences between distributions:

– Package manager: aptitude, yum, portage, etc.
• Used to install programs, libraries,

documentation.
– Kernel version: most are behind a few cycles
– Windowing Interface: Gnome, KDE, etc.
– Target audience: power-user, newbie, enterprise, etc.
– Community

Which Distribution (Distro) to Use?

• The best advice I can give here is to use what you
feel most comfortable using.

• If you haven't installed Linux on your computer
before, maybe this class is the best time to give it a
try!

• Other reasoning to choose one distribution over
another:

– Local standard - Colleagues/coworkers all use
same distribution.

Additional References

• http://www.lwn.net/
– Linux news site. Covers distros, conferences,

and recent kernel development. Includes
many links to free books, documentation, and
the like.

• http://www.kernel.org/
– Here's where you can obtain the latest Linux

kernel, if you want to get your hands dirty.

http://www.lwn.net/
http://www.kernel.org/

Why Use Linux?

• Linux is open source
• We actually have access to the kernel code

and can change it
• Much of the Internet runs on UNIX/Linux!

• Wonderful time to get some experience

Unix/Linux Share

• Desktop/laptop – Linux 1.73%
• Mobile Devices – Android 79.0%
• Servers – Unix-like/Linux 66.8%
• Supercomputers – Linux 96.4-98%

Source:
http://en.wikipedia.org/wiki/Usage_share_of_operatin
g_systems#Servers

http://en.wikipedia.org/wiki/Usage_share_of_operating_systems%23Servers
http://en.wikipedia.org/wiki/Usage_share_of_operating_systems%23Servers

Projects

Roughly Three Projects

• Write your own shell
• Interface to the operating system

• Compile and modify an operating system kernel
• Will have team virtual machines

• Create a program to read raw FAT file system
images

Projects: Partners

•Projects will be completed in pairs
•Choose a partner and send me an email
(diesburg@cs.uni.edu) with the name of your
partner by 1/22.
•You need only submit one project per group
•Post on the eLearning forum to find a partner
with compatible/complimentary skills and
schedule

mailto:diesburg@cs.uni.edu

Demos

• Halfway Demo
• Make sure you are on track
• Chance for me to give you pointed help

• Final Project Demo
• Demonstrate your project to me for points
• I might ask either team member to describe

code and design decisions

Programming Project

• Start projects when they're assigned.
– They're often trickier than they look. Especially that

synchronization project...
• Ask questions early.

– If you're asking questions, be it to yourself or to others,
you're thinking about the project. This will make it easier
to complete them correctly and on time.

• Write small programs to test your program or language
features you don't understand.

Programming Environment

• Project 1 and Project 3
• Remote Linux servers
• Accessible through ssh and server address

diesburg.cs.uni.edu
• Project 2

• Your own team virtual machines

Accessing the Remote Servers

• 4 Linux Servers at server address
diesburg.cs.uni.edu

• Need usernames and passwords distributed in
class

• If you are unfamiliar accessing remote Linux
servers, please watch this video posted on today’s
webpage

22

Internet

diesburg.cs.uni.edu

prog1 prog2 prog3

prog4

Server Visualization

• Use SSH to connect to “diesburg.cs.uni.edu”
• Secure SHell
• If in Linux or OSX

• Open up a command-line terminal
• $> ssh <username>@diesburg.cs.uni.edu

• If in Windows
• You will need a terminal emulator
• PuTTY (download from link on resrouces

page)
23

Logging In

24

PuTTY

• You will be logged onto the prog1 machine
• But 3 other machines are at your disposal (prog2, prog3, prog4)
• Might want to log into those machines if usage is too high
• Can see the current system load and number of users by issuing the

command ‘w’ at the prompt

• Going to another machine
• At the prompt, use the ssh command:
• $> ssh <username>@prog[2-4]

• Example:
• $> ssh diesburg@prog2
• Use the same password that you used initially. Your files will be visible

on all the machines

 25

Once I am Logged In

• Change your password to something you can
remember
• $> passwd

• Get familiar with Linux shell commands
• Look at course “Resources” page under “Shell Resources”
• Know at least the following

• Maneuvering: cd, ls, pwd
• Creating/deleting: touch, rm, rmdir, mkdir
• Reading files: nano
• Compilation: make, gcc
• Packaging: zip, unzip
• Help: man 26

Next Steps

• Two ways
• Create and edit files on your own computer, then transfer to Linux

server
• Create and edit files directly on Linux server

• I highly recommend the second way!

• File encodings from other operating systems can negatively effect
compilations and cause very confusing errors

• It’s not too bad, just pick a terminal editor

27

Editing Source Files

Editors -- Vim

• The vi editor was created by Bill Joy, the
founder of Sun Microsystems when he was
a graduate student

• The vim editor, vi improved, is the Linux
version of the vi editor
– multiple windows, highlighting text, and

command history

• http://www.vim.org/

Editors -- Emacs

• GNU Emacs is an extensible, customizable text
editor
– Content-sensitive editing modes, including syntax

coloring, for a variety of file types including plain
text, source code, and HTML

• http://www.gnu.org/software/emacs/

Editors -- Others

• Nano and/or pico are also available on most
Linux systems

• If you have never worked in Linux before, this
is your editor!
– Extremely basic
– $>nano <file name>

• In Linux/OSX
• scp

• In Windows
• File transfer client like WinSCP

• From prog1
• wget

31

Transferring Files

32

WinSCP

Programming Language

• C is the programming language of operating
systems

• Kernel, system utilities, and large server
programs (like apache and sendmail)

• Need to understand C to work inside the Linux
kernel

• Will get practice with C in project1
• I will help, but you also need to get yourself

up to speed with the basics

Quick C Language Tutorial

• Look in resources

Compiling

• Video
• $> gcc myfile.c –o myfile

• gcc is the compiler
• myfile.c contains my source code. It could be

called anything as long as it ends with .c
• -o is the output flag – the file that follows this

flag will be the output executable
• myfile – this is the output executable. Can be

called anything

Running your executable

• $> ./myfile
• ./ means “here” (will make more sense once

we start the shell project
• myfile is the name of the executable that you

compiled

Part of Homework 1 (Due next Wed)

• Log onto the class servers
• Go through the online C tutorial
• To test your knowledge, create and compile a C

program on the servers that
1. Takes as input a string of up to 100 characters
2. Counts every letter in the string
3. Prints the letter occurrances

(Hint – hash tables aren’t part of the C standard
library)

Useful Tools

manpages
• Extensive documentation that come with almost all

Unix-like systems
• For documentation on C functions or packages
• Examples

– $> man bash
– $> man strncpy

• Sometimes multiple definitions, so use man section
numbers
– ‘man 1 printf’ shows bash printf
– ‘man 3 printf’ shows C printf

• For more information on sections, see ‘man man’

zip

• Creating a zip file from folder proj1, which
contains your source files:
• $> zip –r proj1.zip proj1

• Unzipping a zip file
• $> unzip proj1.zip

• Test this out before you submit a project!

Make

• make: A program for building and maintaining
computer programs
– developed at Bell Labs around 1978 by S. Feldman

(now at Google)

• Instructions stored in a special format file
called a “makefile”.

• Will be provided for you for the first and
second projects

Debuggers
• Debuggers let you examine the internal workings

of your code while the program runs.
– Debuggers allow you to set breakpoints to stop the

program's execution at a particular point of interest
and examine variables.

– To work with a debugger, you first have to recompile
the program with the proper debugging options.

– Use the -g command line parameter to cc, gcc, or g++
• Example: gcc -g -c foo.c

GDB, the GNU Debugger

• Text-based, invoked with:
 gdb [<programfile> <corefile>|<pid>]]

• Issue ‘man gdb’ for more info

$> ./my.x

$> Segmentation fault

$> gdb ./my.x

(gdb) run

… Segmentation fault

0x08048384 in main() at my.c:4

4 *s = 'H';

(gdb) bt

#0 0x08048384 in main() at my.c:4

GDB Quick Start

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	WinSCP
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44

