
Cooperating Threads

Sarah Diesburg
Operating Systems

CS 3430

Independent Threads

 No states shared with other threads
 Deterministic computation
 Output depends on input

 Reproducible
 Output does not depend on the order and timing

of other threads
 Scheduling order does not matter
 e.g., compilers

Cooperating Threads

 Shared states
 Nondeterministic
 Nonreproducible
 Example: 2 threads sharing the same display
 Thread A Thread B
 printf(“ABC”); printf(“123”);

 You may get “A12BC3”

So, Why Allow Cooperating Threads?

So, Why Allow Cooperating Threads?

 Shared resources
 e.g., a single processor

 Speedup
 Occurs when threads use different resources at

different times
 Modularity
 An application can be decomposed into threads

Some Concurrent Programs

 If threads work on separate data, scheduling
does not matter

 Thread A Thread B
 x = 1; y = 2;

Some Concurrent Programs

 If threads share data, the final values are not
as obvious

 Thread A Thread B
 x = 1; y = 2;
 x = y + 1; y = y * 2;

 What are the indivisible operations?

Atomic Operations

 An atomic operation always runs to
completion; it’s all or nothing
 e.g., memory loads and stores on most machines

 Many operations are not atomic
 Double precision floating point store on 32-bit

machines

Suppose…

 Each C statement is atomic
 Let’s revisit the example…

All Possible Execution Orders

 Thread A Thread B
 x = 1; y = 2;
 x = y + 1; y = y * 2;

 x = 1 y = 2

x = y + 1 y = 2

y = 2

y = y * 2

x = y + 1 y = y * 2

y = y * 2 x = y + 1

x = 1 y = y * 2

x = 1
x = y + 1

A decision tree

All Possible Execution Orders

 Thread A Thread B
 x = 1; y = 2;
 x = y + 1; y = y * 2;

 x = 1 y = 2

x = y + 1 y = 2

x = y + 1 y = y * 2 y = 2

y = y * 2 y = y * 2 x = y + 1

x = 1 y = y * 2

x = 1
x = y + 1

(x = ?, y = ?)

(x = 1, y = ?)

(x = ?, y = ?)

(x = ?, y = 2)

(x = ?, y = 4)

(x = 1, y = 2)

(x = ?, y = 2)

(x = ?, y = 4)

(x = 3, y = 2)

(x = 3, y = 4)

(x = 1, y = 4)

(x = 5, y = 4)

(x = 1, y = 4)

(x = 5, y = 4)

Another Example

 Assume each C statement is atomic
 Both threads are in the same address space

Thread A Thread B
j = 0; j = 0;
while (j < 10) { while (j > -10) {
 ++j; --j;
} }
printf(“A wins”); printf(“B wins”);

So…

 Who wins?
 Can the computation go on forever?

 Race conditions occur when threads share

data, and their results depend on the timing
of their executions…

	Cooperating Threads
	Independent Threads
	Cooperating Threads
	So, Why Allow Cooperating Threads?
	So, Why Allow Cooperating Threads?
	Some Concurrent Programs
	Some Concurrent Programs
	Atomic Operations
	Suppose…
	All Possible Execution Orders
	All Possible Execution Orders
	Another Example
	So…

