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Independent Threads 

 No states shared with other threads 
 Deterministic computation 
 Output depends on input 

 Reproducible  
 Output does not depend on the order and timing 

of other threads 
 Scheduling order does not matter 
 e.g., compilers 



Cooperating Threads 

 Shared states 
 Nondeterministic 
 Nonreproducible 
 Example:  2 threads sharing the same display 
 Thread A   Thread B 
 printf(“ABC”); printf(“123”); 
 
 You may get “A12BC3” 



So, Why Allow Cooperating Threads? 

 



So, Why Allow Cooperating Threads? 

 Shared resources  
 e.g., a single processor 

 Speedup  
 Occurs when threads use different resources at 

different times 
 Modularity 
 An application can be decomposed into threads 



Some Concurrent Programs 

 If threads work on separate data, scheduling 
does not matter 
 
 Thread A  Thread B 
 x = 1;   y = 2; 



Some Concurrent Programs 

 If threads share data, the final values are not 
as obvious 
 
 Thread A  Thread B 
 x = 1;   y = 2; 
 x = y + 1;  y = y * 2; 
 

 What are the indivisible operations? 
 



Atomic Operations 

 An atomic operation always runs to 
completion; it’s all or nothing 
 e.g., memory loads and stores on most machines 

 Many operations are not atomic 
 Double precision floating point store on 32-bit 

machines 



Suppose… 

 Each C statement is atomic 
 Let’s revisit the example… 



All Possible Execution Orders 

 Thread A  Thread B 
 x = 1;   y = 2; 
 x = y + 1;  y = y * 2; 
 

 x = 1 y = 2 

x = y + 1 y = 2 

y = 2 

y = y * 2 

x = y + 1 y = y * 2 

y = y * 2 x = y + 1 

x = 1 y = y * 2 

x = 1 
x = y + 1 

A decision tree 



All Possible Execution Orders 

 Thread A  Thread B 
 x = 1;   y = 2; 
 x = y + 1;  y = y * 2; 
 

 x = 1 y = 2 

x = y + 1 y = 2 

x = y + 1 y = y * 2 y = 2 

y = y * 2 y = y * 2 x = y + 1 

x = 1 y = y * 2 

x = 1 
x = y + 1 

(x = ?, y = ?) 

(x = 1, y = ?) 

(x = ?, y = ?) 

(x = ?, y = 2) 

(x = ?, y = 4) 

(x = 1, y = 2) 

(x = ?, y = 2) 

(x = ?, y = 4) 

(x = 3, y = 2) 

(x = 3, y = 4) 

(x = 1, y = 4) 

(x = 5, y = 4) 

(x = 1, y = 4) 

(x = 5, y = 4) 



Another Example 

 Assume each C statement is atomic 
 Both threads are in the same address space 
 
Thread A     Thread B 
j = 0;      j = 0; 
while (j < 10) {   while (j > -10) { 
 ++j;           --j; 
}        } 
printf(“A wins”);   printf(“B wins”); 



So… 

 Who wins? 
 Can the computation go on forever? 

 
 Race conditions occur when threads share 

data, and their results depend on the timing 
of their executions… 
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