
Cooperating Threads

Sarah Diesburg
Operating Systems

CS 3430

Independent Threads

 No states shared with other threads
 Deterministic computation
 Output depends on input

 Reproducible
 Output does not depend on the order and timing

of other threads
 Scheduling order does not matter
 e.g., compilers

Cooperating Threads

 Shared states
 Nondeterministic
 Nonreproducible
 Example: 2 threads sharing the same display
 Thread A Thread B
 printf(“ABC”); printf(“123”);

 You may get “A12BC3”

So, Why Allow Cooperating Threads?

So, Why Allow Cooperating Threads?

 Shared resources
 e.g., a single processor

 Speedup
 Occurs when threads use different resources at

different times
 Modularity
 An application can be decomposed into threads

Some Concurrent Programs

 If threads work on separate data, scheduling
does not matter

 Thread A Thread B
 x = 1; y = 2;

Some Concurrent Programs

 If threads share data, the final values are not
as obvious

 Thread A Thread B
 x = 1; y = 2;
 x = y + 1; y = y * 2;

 What are the indivisible operations?

Atomic Operations

 An atomic operation always runs to
completion; it’s all or nothing
 e.g., memory loads and stores on most machines

 Many operations are not atomic
 Double precision floating point store on 32-bit

machines

Suppose…

 Each C statement is atomic
 Let’s revisit the example…

All Possible Execution Orders

 Thread A Thread B
 x = 1; y = 2;
 x = y + 1; y = y * 2;

 x = 1 y = 2

x = y + 1 y = 2

y = 2

y = y * 2

x = y + 1 y = y * 2

y = y * 2 x = y + 1

x = 1 y = y * 2

x = 1
x = y + 1

A decision tree

All Possible Execution Orders

 Thread A Thread B
 x = 1; y = 2;
 x = y + 1; y = y * 2;

 x = 1 y = 2

x = y + 1 y = 2

x = y + 1 y = y * 2 y = 2

y = y * 2 y = y * 2 x = y + 1

x = 1 y = y * 2

x = 1
x = y + 1

(x = ?, y = ?)

(x = 1, y = ?)

(x = ?, y = ?)

(x = ?, y = 2)

(x = ?, y = 4)

(x = 1, y = 2)

(x = ?, y = 2)

(x = ?, y = 4)

(x = 3, y = 2)

(x = 3, y = 4)

(x = 1, y = 4)

(x = 5, y = 4)

(x = 1, y = 4)

(x = 5, y = 4)

Another Example

 Assume each C statement is atomic
 Both threads are in the same address space

Thread A Thread B
j = 0; j = 0;
while (j < 10) { while (j > -10) {
 ++j; --j;
} }
printf(“A wins”); printf(“B wins”);

So…

 Who wins?
 Can the computation go on forever?

 Race conditions occur when threads share

data, and their results depend on the timing
of their executions…

	Cooperating Threads
	Independent Threads
	Cooperating Threads
	So, Why Allow Cooperating Threads?
	So, Why Allow Cooperating Threads?
	Some Concurrent Programs
	Some Concurrent Programs
	Atomic Operations
	Suppose…
	All Possible Execution Orders
	All Possible Execution Orders
	Another Example
	So…

