
Semaphores and
Bounded Buffer

Sarah Diesburg
Operating Systems

CS 3430

Semaphores

Semaphore is a type of generalized
lock
–Consist of a nonnegative integer value
–Two operations

P(): an atomic operation that waits for
semaphore to become positive, then
decrement it by 1

V(): an atomic operation that increments
semaphore by 1 and wakes up a waiting
thread at P(), if any.

Origin of Semaphores

Defined by Dijkstra in the 60s
Main synchronization primitives used

in UNIX
The P operation is an abbreviation

for proberen (Dutch), meaning “to
test”

The V operation stands for
verhogen, meaning “to increment”

Semaphores vs. Integers

No negative values
Only operations are P() and V()

–Cannot read or write semaphore values
(Except at the initialization times)

Operations are atomic
–Two P() calls cannot decrement the

value below zero
–A sleeping thread at P() cannot miss a

wakeup from V()

Binary Semaphores

A binary semaphore is initialized to
1

P() waits until the value is 1
–Then set it to 0

 V() sets the value to 1
– Wakes up a thread waiting at P(), if any

Two Uses of Semaphores

1. Mutual exclusion
–Semaphore has an initial value of 1
– P() is called before a critical section
–V() is called after the critical section

semaphore litter_box = 1;
P(litter_box);
// critical section
V(litter_box);

Two Uses of Semaphores

1. Mutual exclusion
–Semaphore has an initial value of 1
– P() is called before a critical section
–V() is called after the critical section

semaphore litter_box = 1;
P(litter_box);
// critical section
V(litter_box);

litter_box = 1

Two Uses of Semaphores

1. Mutual exclusion
–Semaphore has an initial value of 1
– P() is called before a critical section
–V() is called after the critical section

semaphore litter_box = 1;
P(litter_box); // purrr…
// critical section
V(litter_box);

litter_box = 1 0

Two Uses of Semaphores

1. Mutual exclusion
–Semaphore has an initial value of 1
– P() is called before a critical section
–V() is called after the critical section

semaphore litter_box = 1;
P(litter_box);
// critical section
V(litter_box);

litter_box = 0

Two Uses of Semaphores

1. Mutual exclusion
–Semaphore has an initial value of 1
– P() is called before a critical section
–V() is called after the critical section

semaphore litter_box = 1;
P(litter_box); // meow…
// critical section
V(litter_box);

litter_box = 0

Two Uses of Semaphores

1. Mutual exclusion
–Semaphore has an initial value of 1
– P() is called before a critical section
–V() is called after the critical section

semaphore litter_box = 1;
P(litter_box);
// critical section
V(litter_box);

litter_box = 0 1

Two Uses of Semaphores

2. Scheduling
–Semaphore usually has an initial value

of 0

semaphore wait_left = 0;
semaphore wait_right = 0;

Left_Paw() { Right_Paw() {
 slide_left(); P(wait_left);
 V(wait_left); slide_left();
 P(wait_right); slide_right();
 slide_right(); V(wait_right);
} }

Two Uses of Semaphores

2. Scheduling
–Semaphore usually has an initial value

of 0

semaphore wait_left = 0;
semaphore wait_right = 0;

Left_Paw() { Right_Paw() {
 slide_left(); P(wait_left);
 V(wait_left); slide_left();
 P(wait_right); slide_right();
 slide_right(); V(wait_right);
} }

wait_left = 0
wait_right = 0

Two Uses of Semaphores

2. Scheduling
–Semaphore usually has an initial value

of 0

semaphore wait_left = 0;
semaphore wait_right = 0;

Left_Paw() { Right_Paw() {
 slide_left(); P(wait_left);
 V(wait_left); slide_left();
 P(wait_right); slide_right();
 slide_right(); V(wait_right);
} }

wait_left = 0
wait_right = 0

Two Uses of Semaphores

2. Scheduling
–Semaphore usually has an initial value

of 0

semaphore wait_left = 0;
semaphore wait_right = 0;

Left_Paw() { Right_Paw() {
 slide_left(); P(wait_left);
 V(wait_left); slide_left();
 P(wait_right); slide_right();
 slide_right(); V(wait_right);
} }

wait_left = 0
wait_right = 0

wait

Two Uses of Semaphores

2. Scheduling
–Semaphore usually has an initial value

of 0

semaphore wait_left = 0;
semaphore wait_right = 0;

Left_Paw() { Right_Paw() {
 slide_left(); P(wait_left);
 V(wait_left); slide_left();
 P(wait_right); slide_right();
 slide_right(); V(wait_right);
} }

wait_left = 0
wait_right = 0

Two Uses of Semaphores

2. Scheduling
–Semaphore usually has an initial value

of 0

semaphore wait_left = 0;
semaphore wait_right = 0;

Left_Paw() { Right_Paw() {
 slide_left(); P(wait_left);
 V(wait_left); slide_left();
 P(wait_right); slide_right();
 slide_right(); V(wait_right);
} }

wait_left = 0 1
wait_right = 0

Two Uses of Semaphores

2. Scheduling
–Semaphore usually has an initial value

of 0

semaphore wait_left = 0;
semaphore wait_right = 0;

Left_Paw() { Right_Paw() {
 slide_left(); P(wait_left);
 V(wait_left); slide_left();
 P(wait_right); slide_right();
 slide_right(); V(wait_right);
} }

wait_left = 1 0
wait_right = 0

Two Uses of Semaphores

2. Scheduling
–Semaphore usually has an initial value

of 0

semaphore wait_left = 0;
semaphore wait_right = 0;

Left_Paw() { Right_Paw() {
 slide_left(); P(wait_left);
 V(wait_left); slide_left();
 P(wait_right); slide_right();
 slide_right(); V(wait_right);
} }

wait_left = 0
wait_right = 0

Two Uses of Semaphores

2. Scheduling
–Semaphore usually has an initial value

of 0

semaphore wait_left = 0;
semaphore wait_right = 0;

Left_Paw() { Right_Paw() {
 slide_left(); P(wait_left);
 V(wait_left); slide_left();
 P(wait_right); slide_right();
 slide_right(); V(wait_right);
} }

wait_left = 0
wait_right = 0

wait

Two Uses of Semaphores

2. Scheduling
–Semaphore usually has an initial value

of 0

semaphore wait_left = 0;
semaphore wait_right = 0;

Left_Paw() { Right_Paw() {
 slide_left(); P(wait_left);
 V(wait_left); slide_left();
 P(wait_right); slide_right();
 slide_right(); V(wait_right);
} }

wait_left = 0
wait_right = 0

Two Uses of Semaphores

2. Scheduling
–Semaphore usually has an initial value

of 0

semaphore wait_left = 0;
semaphore wait_right = 0;

Left_Paw() { Right_Paw() {
 slide_left(); P(wait_left);
 V(wait_left); slide_left();
 P(wait_right); slide_right();
 slide_right(); V(wait_right);
} }

wait_left = 0
wait_right = 0 1

Two Uses of Semaphores

2. Scheduling
–Semaphore usually has an initial value

of 0

semaphore wait_left = 0;
semaphore wait_right = 0;

Left_Paw() { Right_Paw() {
 slide_left(); P(wait_left);
 V(wait_left); slide_left();
 P(wait_right); slide_right();
 slide_right(); V(wait_right);
} }

wait_left = 0
wait_right = 1 0

Two Uses of Semaphores

2. Scheduling
–Semaphore usually has an initial value

of 0

semaphore wait_left = 0;
semaphore wait_right = 0;

Left_Paw() { Right_Paw() {
 slide_left(); P(wait_left);
 V(wait_left); slide_left();
 P(wait_right); slide_right();
 slide_right(); V(wait_right);
} }

wait_left = 0
wait_right = 0

Two Uses of Semaphores

2. Scheduling
–Semaphore usually has an initial value

of 0

semaphore s1 = 0;
semaphore s2 = 0;

A() { B() {
 write(x); P(s1);
 V(s1); read(x);
 P(s2); write(y);
 read(y); V(s2);
} }

Producer-Consumer with a
Bounded Buffer

A classic problem
A producer put things into a shared

buffer
A consumer takes them out

Problem Constraints

The solution involves both scheduling
and mutual exclusion

Constraints
–The consumer must wait if buffers are

empty (scheduling constraint)
– The producer must wait if buffers are

full (scheduling constraint)
–Only one thread can manipulate the

buffer at a time (mutual exclusion)

Developing the Solution

 Each constraint
needs a semaphore

semaphore mutex = 1;
semaphore nFreeBuffers = N;
semaphore nLoadedBuffers = 0;

Developing the Solution

 Each constraint
needs a semaphore

semaphore mutex = 1;
semaphore nFreeBuffers = N;
semaphore nLoadedBuffers = 0;

Producer() {

 P(mutex);
 // put 1 item in the buffer
 V(mutex);

}

Consumer() {

 P(mutex);
 // take 1 item from the
 // buffer
 V(mutex);

}

Developing the Solution

 Each constraint
needs a semaphore

semaphore mutex = 1;
semaphore nFreeBuffers = N;
semaphore nLoadedBuffers = 0;

Producer() {
 P(nFreeBuffers);
 P(mutex);
 // put 1 item in the buffer
 V(mutex);

}

Consumer() {
 P(nLoadedBuffers);
 P(mutex);
 // take 1 item from the
 // buffer
 V(mutex);

}

Developing the Solution

 Each constraint
needs a semaphore

semaphore mutex = 1;
semaphore nFreeBuffers = N;
semaphore nLoadedBuffers = 0;

Producer() {
 P(nFreeBuffers);
 P(mutex);
 // put 1 item in the buffer
 V(mutex);
 V(nLoadedBuffers);
}

Consumer() {
 P(nLoadedBuffers);
 P(mutex);
 // take 1 item from the
 // buffer
 V(mutex);
 V(nFreeBuffers);
}

Developing the Solution

 Each constraint
needs a semaphore

semaphore mutex = 1;
semaphore nFreeBuffers = 2;
semaphore nLoadedBuffers = 0;

Producer() {
 P(nFreeBuffers);
 P(mutex);
 // put 1 item in the buffer
 V(mutex);
 V(nLoadedBuffers);
}

Consumer() {
 P(nLoadedBuffers);
 P(mutex);
 // take 1 item from the
 // buffer
 V(mutex);
 V(nFreeBuffers);
}

mutex = 1
nFreeBuffers = 2
nLoadedBuffers = 0

Developing the Solution

 Each constraint
needs a semaphore

semaphore mutex = 1;
semaphore nFreeBuffers = 2;
semaphore nLoadedBuffers = 0;

Producer() {
 P(nFreeBuffers);
 P(mutex);
 // put 1 item in the buffer
 V(mutex);
 V(nLoadedBuffers);
}

Consumer() {
 P(nLoadedBuffers);
 P(mutex);
 // take 1 item from the
 // buffer
 V(mutex);
 V(nFreeBuffers);
}

mutex = 1
nFreeBuffers = 2
nLoadedBuffers = 0

Developing the Solution

 Each constraint
needs a semaphore

semaphore mutex = 1;
semaphore nFreeBuffers = 2;
semaphore nLoadedBuffers = 0;

Producer() {
 P(nFreeBuffers);
 P(mutex);
 // put 1 item in the buffer
 V(mutex);
 V(nLoadedBuffers);
}

Consumer() {
 P(nLoadedBuffers);
 P(mutex);
 // take 1 item from the
 // buffer
 V(mutex);
 V(nFreeBuffers);
}

mutex = 1
nFreeBuffers = 2
nLoadedBuffers = 0

Developing the Solution

 Each constraint
needs a semaphore

semaphore mutex = 1;
semaphore nFreeBuffers = 2;
semaphore nLoadedBuffers = 0;

Producer() {
 P(nFreeBuffers);
 P(mutex);
 // put 1 item in the buffer
 V(mutex);
 V(nLoadedBuffers);
}

Consumer() {
 P(nLoadedBuffers);
 P(mutex);
 // take 1 item from the
 // buffer
 V(mutex);
 V(nFreeBuffers);
}

mutex = 1
nFreeBuffers = 2 1
nLoadedBuffers = 0

Developing the Solution

 Each constraint
needs a semaphore

semaphore mutex = 1;
semaphore nFreeBuffers = 2;
semaphore nLoadedBuffers = 0;

Producer() {
 P(nFreeBuffers);
 P(mutex);
 // put 1 item in the buffer
 V(mutex);
 V(nLoadedBuffers);
}

Consumer() {
 P(nLoadedBuffers);
 P(mutex);
 // take 1 item from the
 // buffer
 V(mutex);
 V(nFreeBuffers);
}

mutex = 1 0
nFreeBuffers = 1
nLoadedBuffers = 0

Developing the Solution

 Each constraint
needs a semaphore

semaphore mutex = 1;
semaphore nFreeBuffers = 2;
semaphore nLoadedBuffers = 0;

Producer() {
 P(nFreeBuffers);
 P(mutex);
 // put 1 item in the buffer
 V(mutex);
 V(nLoadedBuffers);
}

Consumer() {
 P(nLoadedBuffers);
 P(mutex);
 // take 1 item from the
 // buffer
 V(mutex);
 V(nFreeBuffers);
}

mutex = 0
nFreeBuffers = 1
nLoadedBuffers = 0

Developing the Solution

 Each constraint
needs a semaphore

semaphore mutex = 1;
semaphore nFreeBuffers = 2;
semaphore nLoadedBuffers = 0;

Producer() {
 P(nFreeBuffers);
 P(mutex);
 // put 1 item in the buffer
 V(mutex);
 V(nLoadedBuffers);
}

Consumer() {
 P(nLoadedBuffers);
 P(mutex);
 // take 1 item from the
 // buffer
 V(mutex);
 V(nFreeBuffers);
}

mutex = 0
nFreeBuffers = 1
nLoadedBuffers = 0

Developing the Solution

 Each constraint
needs a semaphore

semaphore mutex = 1;
semaphore nFreeBuffers = 2;
semaphore nLoadedBuffers = 0;

Producer() {
 P(nFreeBuffers);
 P(mutex);
 // put 1 item in the buffer
 V(mutex);
 V(nLoadedBuffers);
}

Consumer() {
 P(nLoadedBuffers);
 P(mutex);
 // take 1 item from the
 // buffer
 V(mutex);
 V(nFreeBuffers);
}

mutex = 0
nFreeBuffers = 1 0
nLoadedBuffers = 0

Developing the Solution

 Each constraint
needs a semaphore

semaphore mutex = 1;
semaphore nFreeBuffers = 2;
semaphore nLoadedBuffers = 0;

Producer() {
 P(nFreeBuffers);
 P(mutex);
 // put 1 item in the buffer
 V(mutex);
 V(nLoadedBuffers);
}

Consumer() {
 P(nLoadedBuffers);
 P(mutex);
 // take 1 item from the
 // buffer
 V(mutex);
 V(nFreeBuffers);
}

mutex = 0
nFreeBuffers = 0
nLoadedBuffers = 0

Developing the Solution

 Each constraint
needs a semaphore

semaphore mutex = 1;
semaphore nFreeBuffers = 2;
semaphore nLoadedBuffers = 0;

Producer() {
 P(nFreeBuffers);
 P(mutex);
 // put 1 item in the buffer
 V(mutex);
 V(nLoadedBuffers);
}

Consumer() {
 P(nLoadedBuffers);
 P(mutex);
 // take 1 item from the
 // buffer
 V(mutex);
 V(nFreeBuffers);
}

mutex = 0 1
nFreeBuffers = 0
nLoadedBuffers = 0

Developing the Solution

 Each constraint
needs a semaphore

semaphore mutex = 1;
semaphore nFreeBuffers = 2;
semaphore nLoadedBuffers = 0;

Producer() {
 P(nFreeBuffers);
 P(mutex);
 // put 1 item in the buffer
 V(mutex);
 V(nLoadedBuffers);
}

Consumer() {
 P(nLoadedBuffers);
 P(mutex);
 // take 1 item from the
 // buffer
 V(mutex);
 V(nFreeBuffers);
}

mutex = 1 0
nFreeBuffers = 0
nLoadedBuffers = 0

Developing the Solution

 Each constraint
needs a semaphore

semaphore mutex = 1;
semaphore nFreeBuffers = 2;
semaphore nLoadedBuffers = 0;

Producer() {
 P(nFreeBuffers);
 P(mutex);
 // put 1 item in the buffer
 V(mutex);
 V(nLoadedBuffers);
}

Consumer() {
 P(nLoadedBuffers);
 P(mutex);
 // take 1 item from the
 // buffer
 V(mutex);
 V(nFreeBuffers);
}

mutex = 0
nFreeBuffers = 0
nLoadedBuffers = 0

Developing the Solution

 Each constraint
needs a semaphore

semaphore mutex = 1;
semaphore nFreeBuffers = 2;
semaphore nLoadedBuffers = 0;

Producer() {
 P(nFreeBuffers);
 P(mutex);
 // put 1 item in the buffer
 V(mutex);
 V(nLoadedBuffers);
}

Consumer() {
 P(nLoadedBuffers);
 P(mutex);
 // take 1 item from the
 // buffer
 V(mutex);
 V(nFreeBuffers);
}

mutex = 0
nFreeBuffers = 0
nLoadedBuffers = 0 1

Developing the Solution

 Each constraint
needs a semaphore

semaphore mutex = 1;
semaphore nFreeBuffers = 2;
semaphore nLoadedBuffers = 0;

Producer() {
 P(nFreeBuffers);
 P(mutex);
 // put 1 item in the buffer
 V(mutex);
 V(nLoadedBuffers);
}

Consumer() {
 P(nLoadedBuffers);
 P(mutex);
 // take 1 item from the
 // buffer
 V(mutex);
 V(nFreeBuffers);
}

mutex = 0
nFreeBuffers = 0
nLoadedBuffers = 1 0

Developing the Solution

 Each constraint
needs a semaphore

semaphore mutex = 1;
semaphore nFreeBuffers = 2;
semaphore nLoadedBuffers = 0;

Producer() {
 P(nFreeBuffers);
 P(mutex);
 // put 1 item in the buffer
 V(mutex);
 V(nLoadedBuffers);
}

Consumer() {
 P(nLoadedBuffers);
 P(mutex);
 // take 1 item from the
 // buffer
 V(mutex);
 V(nFreeBuffers);
}

mutex = 0
nFreeBuffers = 0
nLoadedBuffers = 0

Developing the Solution

 Each constraint
needs a semaphore

semaphore mutex = 1;
semaphore nFreeBuffers = 2;
semaphore nLoadedBuffers = 0;

Producer() {
 P(nFreeBuffers);
 P(mutex);
 // put 1 item in the buffer
 V(mutex);
 V(nLoadedBuffers);
}

Consumer() {
 P(nLoadedBuffers);
 P(mutex);
 // take 1 item from the
 // buffer
 V(mutex);
 V(nFreeBuffers);
}

mutex = 0 1
nFreeBuffers = 0
nLoadedBuffers = 0

Developing the Solution

 Each constraint
needs a semaphore

semaphore mutex = 1;
semaphore nFreeBuffers = 2;
semaphore nLoadedBuffers = 0;

Producer() {
 P(nFreeBuffers);
 P(mutex);
 // put 1 item in the buffer
 V(mutex);
 V(nLoadedBuffers);
}

Consumer() {
 P(nLoadedBuffers);
 P(mutex);
 // take 1 item from the
 // buffer
 V(mutex);
 V(nFreeBuffers);
}

mutex = 1 0
nFreeBuffers = 0
nLoadedBuffers = 0

Developing the Solution

 Each constraint
needs a semaphore

semaphore mutex = 1;
semaphore nFreeBuffers = 2;
semaphore nLoadedBuffers = 0;

Producer() {
 P(nFreeBuffers);
 P(mutex);
 // put 1 item in the buffer
 V(mutex);
 V(nLoadedBuffers);
}

Consumer() {
 P(nLoadedBuffers);
 P(mutex);
 // take 1 item from the
 // buffer
 V(mutex);
 V(nFreeBuffers);
}

mutex = 0
nFreeBuffers = 0
nLoadedBuffers = 0

Developing the Solution

 Each constraint
needs a semaphore

semaphore mutex = 1;
semaphore nFreeBuffers = 2;
semaphore nLoadedBuffers = 0;

Producer() {
 P(nFreeBuffers);
 P(mutex);
 // put 1 item in the buffer
 V(mutex);
 V(nLoadedBuffers);
}

Consumer() {
 P(nLoadedBuffers);
 P(mutex);
 // take 1 item from the
 // buffer
 V(mutex);
 V(nFreeBuffers);
}

mutex = 0
nFreeBuffers = 0
nLoadedBuffers = 0

Developing the Solution

 Each constraint
needs a semaphore

semaphore mutex = 1;
semaphore nFreeBuffers = 2;
semaphore nLoadedBuffers = 0;

Producer() {
 P(nFreeBuffers);
 P(mutex);
 // put 1 item in the buffer
 V(mutex);
 V(nLoadedBuffers);
}

Consumer() {
 P(nLoadedBuffers);
 P(mutex);
 // take 1 item from the
 // buffer
 V(mutex);
 V(nFreeBuffers);
}

mutex = 0
nFreeBuffers = 0
nLoadedBuffers = 0

Developing the Solution

 Each constraint
needs a semaphore

semaphore mutex = 1;
semaphore nFreeBuffers = 2;
semaphore nLoadedBuffers = 0;

Producer() {
 P(nFreeBuffers);
 P(mutex);
 // put 1 item in the buffer
 V(mutex);
 V(nLoadedBuffers);
}

Consumer() {
 P(nLoadedBuffers);
 P(mutex);
 // take 1 item from the
 // buffer
 V(mutex);
 V(nFreeBuffers);
}

mutex = 0 1
nFreeBuffers = 0
nLoadedBuffers = 0

Developing the Solution

 Each constraint
needs a semaphore

semaphore mutex = 1;
semaphore nFreeBuffers = 2;
semaphore nLoadedBuffers = 0;

Producer() {
 P(nFreeBuffers);
 P(mutex);
 // put 1 item in the buffer
 V(mutex);
 V(nLoadedBuffers);
}

Consumer() {
 P(nLoadedBuffers);
 P(mutex);
 // take 1 item from the
 // buffer
 V(mutex);
 V(nFreeBuffers);
}

mutex = 1
nFreeBuffers = 0
nLoadedBuffers = 0

Developing the Solution

 Each constraint
needs a semaphore

semaphore mutex = 1;
semaphore nFreeBuffers = 2;
semaphore nLoadedBuffers = 0;

Producer() {
 P(nFreeBuffers);
 P(mutex);
 // put 1 item in the buffer
 V(mutex);
 V(nLoadedBuffers);
}

Consumer() {
 P(nLoadedBuffers);
 P(mutex);
 // take 1 item from the
 // buffer
 V(mutex);
 V(nFreeBuffers);
}

mutex = 1
nFreeBuffers = 0
nLoadedBuffers = 0

Developing the Solution

 Each constraint
needs a semaphore

semaphore mutex = 1;
semaphore nFreeBuffers = 2;
semaphore nLoadedBuffers = 0;

Producer() {
 P(nFreeBuffers);
 P(mutex);
 // put 1 item in the buffer
 V(mutex);
 V(nLoadedBuffers);
}

Consumer() {
 P(nLoadedBuffers);
 P(mutex);
 // take 1 item from the
 // buffer
 V(mutex);
 V(nFreeBuffers);
}

mutex = 1
nFreeBuffers = 0 1
nLoadedBuffers = 0

Developing the Solution

 Each constraint
needs a semaphore

semaphore mutex = 1;
semaphore nFreeBuffers = 2;
semaphore nLoadedBuffers = 0;

Producer() {
 P(nFreeBuffers);
 P(mutex);
 // put 1 item in the buffer
 V(mutex);
 V(nLoadedBuffers);
}

Consumer() {
 P(nLoadedBuffers);
 P(mutex);
 // take 1 item from the
 // buffer
 V(mutex);
 V(nFreeBuffers);
}

mutex = 1
nFreeBuffers = 1 0
nLoadedBuffers = 0

Developing the Solution

 Each constraint
needs a semaphore

semaphore mutex = 1;
semaphore nFreeBuffers = 2;
semaphore nLoadedBuffers = 0;

Producer() {
 P(nFreeBuffers);
 P(mutex);
 // put 1 item in the buffer
 V(mutex);
 V(nLoadedBuffers);
}

Consumer() {
 P(nLoadedBuffers);
 P(mutex);
 // take 1 item from the
 // buffer
 V(mutex);
 V(nFreeBuffers);
}

mutex = 1 0
nFreeBuffers = 0
nLoadedBuffers = 0

Developing the Solution

 Each constraint
needs a semaphore

semaphore mutex = 1;
semaphore nFreeBuffers = 2;
semaphore nLoadedBuffers = 0;

Producer() {
 P(nFreeBuffers);
 P(mutex);
 // put 1 item in the buffer
 V(mutex);
 V(nLoadedBuffers);
}

Consumer() {
 P(nLoadedBuffers);
 P(mutex);
 // take 1 item from the
 // buffer
 V(mutex);
 V(nFreeBuffers);
}

mutex = 0
nFreeBuffers = 0
nLoadedBuffers = 0

Developing the Solution

 Each constraint
needs a semaphore

semaphore mutex = 1;
semaphore nFreeBuffers = 2;
semaphore nLoadedBuffers = 0;

Producer() {
 P(nFreeBuffers);
 P(mutex);
 // put 1 item in the buffer
 V(mutex);
 V(nLoadedBuffers);
}

Consumer() {
 P(nLoadedBuffers);
 P(mutex);
 // take 1 item from the
 // buffer
 V(mutex);
 V(nFreeBuffers);
}

mutex = 0
nFreeBuffers = 0
nLoadedBuffers = 0

	Semaphores and Bounded Buffer
	Semaphores
	Origin of Semaphores
	Semaphores vs. Integers
	Binary Semaphores
	Two Uses of Semaphores
	Two Uses of Semaphores
	Two Uses of Semaphores
	Two Uses of Semaphores
	Two Uses of Semaphores
	Two Uses of Semaphores
	Two Uses of Semaphores
	Two Uses of Semaphores
	Two Uses of Semaphores
	Two Uses of Semaphores
	Two Uses of Semaphores
	Two Uses of Semaphores
	Two Uses of Semaphores
	Two Uses of Semaphores
	Two Uses of Semaphores
	Two Uses of Semaphores
	Two Uses of Semaphores
	Two Uses of Semaphores
	Two Uses of Semaphores
	Two Uses of Semaphores
	Producer-Consumer with a Bounded Buffer
	Problem Constraints
	Developing the Solution
	Developing the Solution
	Developing the Solution
	Developing the Solution
	Developing the Solution
	Developing the Solution
	Developing the Solution
	Developing the Solution
	Developing the Solution
	Developing the Solution
	Developing the Solution
	Developing the Solution
	Developing the Solution
	Developing the Solution
	Developing the Solution
	Developing the Solution
	Developing the Solution
	Developing the Solution
	Developing the Solution
	Developing the Solution
	Developing the Solution
	Developing the Solution
	Developing the Solution
	Developing the Solution
	Developing the Solution
	Developing the Solution
	Developing the Solution
	Developing the Solution
	Developing the Solution
	Developing the Solution
	Developing the Solution
	Developing the Solution

