Concurrency Conclusion

Sarah Diesburg
Operating Systems
CS 3430

Threads and Synchronization

o Better, cleaner, and simpler
abstraction to application
programmers

Programming
abstraction

Sequential execution, each with
its own CPU

Semaphores and monitors

Physical
hardware

Single CPU

Interrupts
test and set

Since 1985

o Every major OS comes with threads
OS X
0S/2
Windows XP, NT, Vista, 7,8,10
Linux
Solaris

Since 1985

o Major applications are written in
threads

Word processing
Databases

Web servers
Embedded systems

A Cautionary Tale

o IBM OS/2
https://en.wikipedia.org/wiki/OS/2

—r e T T JE'-‘.I-b-i

A Cautionary Tale

o IBM OS/2

1990
Spectacular failure (IBM re-wrote the
whole OS from scratch)

Used threads for everything

o Window systems
o Communication among programs

Microsoft OS/2

o Created many threads
Few are ready to run

Most threads wait around for user
typing and network packets

Since each thread needs to store its
own execution stack (running or
waiting), OS/2 required $200 extra
memory to store those threads

$200 for working while printing?

The Moral of the Story...

o Threads are cheap
But they are not free

New need for threaded programs

o Moore’s Law no longer in effect

https://en.wikipedia.org/wiki/Moore's_|
aw

Chip performance doubles every 2
years

Not true now
o We need to write programs to

better take advantage of multiple
CPU cores

https://en.wikipedia.org/wiki/Moore's_law

	Concurrency Conclusion
	Threads and Synchronization
	Since 1985
	Since 1985
	A Cautionary Tale
	A Cautionary Tale
	Microsoft OS/2
	The Moral of the Story…
	New need for threaded programs

