
Concurrency Conclusion

Sarah Diesburg
Operating Systems
CS 3430

Threads and Synchronization

 Better, cleaner, and simpler
abstraction to application
programmers

Programming
abstraction

Sequential execution, each with
its own CPU
Semaphores and monitors

Physical
hardware

Single CPU
Interrupts
test_and_set

Since 1985

 Every major OS comes with threads
 OS X
 OS/2
 Windows XP, NT, Vista, 7,8,10
 Linux
 Solaris

Since 1985

 Major applications are written in
threads
 Word processing
 Databases
 Web servers
 Embedded systems

A Cautionary Tale

 IBM OS/2
 https://en.wikipedia.org/wiki/OS/2

A Cautionary Tale

 IBM OS/2
 1990
 Spectacular failure (IBM re-wrote the

whole OS from scratch)
 Used threads for everything

 Window systems
 Communication among programs

Microsoft OS/2

 Created many threads
 Few are ready to run
 Most threads wait around for user

typing and network packets
 Since each thread needs to store its

own execution stack (running or
waiting), OS/2 required $200 extra
memory to store those threads

 $200 for working while printing?

The Moral of the Story…

 Threads are cheap
 But they are not free

New need for threaded programs

 Moore’s Law no longer in effect
 https://en.wikipedia.org/wiki/Moore's_l

aw
 Chip performance doubles every 2

years
 Not true now

 We need to write programs to
better take advantage of multiple
CPU cores

https://en.wikipedia.org/wiki/Moore's_law

	Concurrency Conclusion
	Threads and Synchronization
	Since 1985
	Since 1985
	A Cautionary Tale
	A Cautionary Tale
	Microsoft OS/2
	The Moral of the Story…
	New need for threaded programs

