
Concurrency Conclusion

Sarah Diesburg
Operating Systems
CS 3430

Threads and Synchronization

 Better, cleaner, and simpler
abstraction to application
programmers

Programming
abstraction

Sequential execution, each with
its own CPU
Semaphores and monitors

Physical
hardware

Single CPU
Interrupts
test_and_set

Since 1985

 Every major OS comes with threads
 OS X
 OS/2
 Windows XP, NT, Vista, 7,8,10
 Linux
 Solaris

Since 1985

 Major applications are written in
threads
 Word processing
 Databases
 Web servers
 Embedded systems

A Cautionary Tale

 IBM OS/2
 https://en.wikipedia.org/wiki/OS/2

A Cautionary Tale

 IBM OS/2
 1990
 Spectacular failure (IBM re-wrote the

whole OS from scratch)
 Used threads for everything

 Window systems
 Communication among programs

Microsoft OS/2

 Created many threads
 Few are ready to run
 Most threads wait around for user

typing and network packets
 Since each thread needs to store its

own execution stack (running or
waiting), OS/2 required $200 extra
memory to store those threads

 $200 for working while printing?

The Moral of the Story…

 Threads are cheap
 But they are not free

New need for threaded programs

 Moore’s Law no longer in effect
 https://en.wikipedia.org/wiki/Moore's_l

aw
 Chip performance doubles every 2

years
 Not true now

 We need to write programs to
better take advantage of multiple
CPU cores

https://en.wikipedia.org/wiki/Moore's_law

	Concurrency Conclusion
	Threads and Synchronization
	Since 1985
	Since 1985
	A Cautionary Tale
	A Cautionary Tale
	Microsoft OS/2
	The Moral of the Story…
	New need for threaded programs

