
Genesis:
From Raw Hardware to
Processes

Sarah Diesburg

Operating Systems

CS 3430

How does it all begin?

 How we go from nothing to the operating
system

 How the operating system starts up
processes (services)

Booting Sequence

 The address of the first instruction is fixed

 It is stored in read-only-memory (ROM)
 Why ROM instead of RAM?

Booting Procedure

 ROM stores a Basic Input/Output System
(BIOS)
 BIOS contains information on how to access

storage devices

BIOS Code

 Performs Power-On Self Test (POST)
 Checks memory and devices for their presence

and correct operations

 During this time, you will hear memory counting,
which consists of noises from the floppy and hard
drive, followed by a final beep

After the POST

 The master boot record (MBR) is loaded from
the boot device (configured in BIOS)

 The MBR is stored at the first logical sector of
the boot device (e.g., a hard drive) that
 Fits into a single 512-byte disk sector (boot sector)

 Describes the physical layout of the disk (e.g., number
of tracks)

After Getting the Info on the Boot
Device
 BIOS loads a more sophisticated loader from

other sectors on disk

 The more sophisticated loader loads the
operating system

Operating System Loaders

 GRUB (GRand Unified Bootloader)

More on OS Loaders

 Is partly stored in MBR with the disk partition
table
 A user can specify which disk partition and OS

image to boot
 Windows loader assumes only one bootable disk

partition

 After loading the kernel image, OS loader
sets the kernel mode and jumps to the entry
point of an operating system

Kernel Mode?

 Two hardware modes: kernel mode and user
mode
 Implemented as a single bit

 Some privileged instructions can only be run in
kernel mode to protect OS from errant users

 Operating system must run in kernel mode

Booting Sequence in Brief

 A CPU jumps to a fixed address in ROM,

 Loads the BIOS,

 Performs POST,

 Loads MBR from the boot device,

 Loads an OS loader,

 Loads the kernel image,

 Sets the kernel mode, and

 Jumps to the OS entry point.

Booting Sequence Visualized

Linux Initialization

 Set up a number of things:
 Trap table
 Interrupt handlers
 Scheduler
 Clock
 Kernel modules (hardware and software drivers)
 …
 Process manager

Process 1

 Is instantiated from the init program

 Is the ancestor of all processes

 Controls transitions between runlevels

 Executes startup and shutdown scripts for
each runlevel

Runlevels

 Level 0: shutdown

 Level 1: single-user (command-line only)

 Level 2 - 5: the GUI (called “X” in Linux)
 These levels are typically duplicated

 Level 6: reboot

 These runlevels map to /etc/rcx.d, where x
is 0-6 or S for “Single User”

Runlevels

 SysV (“System 5”) runlevels meant that you
would process them this way:
 Booting: start with 1, go up each run level to

default stop level, executing scripts that start with
“S” for “start”

 Shutdown: start at your current runlevel, go down
one at a time until you reach 0, executing scripts
that start with “K” for “kill”

Runlevels

 Systemd is the newer system, although a lot
of the old runlevel stuff is still preserved.

 Instead of thinking about numbers, you think
about labels mapped to numbers
 Easier? Hmmm….

https://www.tecmint.com/change-runlevels-targets-in-systemd/

Runlevels

 You can start and stop services with the
systemctrl command

https://www.linux.com/learn/understanding-and-using-systemd

Windows?

Process Creation

 How does the init process create all these
other processes (services) that run
independently??

 Via the fork system call family

Before we discuss process creation, a few
words on system calls…

System Calls

 System calls allow processes running at the
user mode to access kernel functions that
run under the kernel mode

 Prevent processes from doing bad things,
such as
 Halting the entire operating system
 Modifying the MBR

UNIX System Calls

 Implemented through the trap instruction

 Causes an interrupt and allows the OS to
switch to kernel mode

 From there, it looks up system call and runs it
trap

set kernel mode

branch table trusted codeuser level kernel level

More on Fork

 Fork is a system call to create a new process
 What does each process have (two things)??

 Two processes may be bulky
 Can create multiple threads instead

 For now, we will concentrate on processes

