UNI CS 3430
Operating Systems

Suggested Exercise #3
__

Note: The point of the exercises is to help you reflect on and better understand the course material for the test. This material and types of questions will probably show up on the exams. We will go over answers to the questions before the exam. Covers Sessions 6—10.

Vocabulary to know [Session 6]: Independent threads, cooperating threads, decision tree, atomic operation, race condition

Vocabulary to know [Session 7]: Environmental variables (know the definition and some common examples like $PATH and $PWD discussed in lecture). Note: the redirection material in the presentation will not be tested on the exam.
Vocabulary to know [Session 8]: Mutual exclusion, critical section, busy-waiting, ways to implement locks (interrupt disables, test_and_set operation, atomic memory load and store)

Vocabulary to know [Session 9]: Semaphore (how is it different than integers, what are the two uses for a semaphore, and what do the P() and V() functions do?)

Vocabulary to know [Session 10]: Safety, liveness, fairness (in regards to using semaphores)

Questions and Short Answers:
1. [Session 6] Suppose each C statement is atomic in the following code. Create the execution order tree with all possible variable values. (See slide 11 in the Cooperating Threads lecture.)

Thread A

Thread B

x=3;

y=2;

x=y-1;

y=x+1;

2. [Session 8] Why does locking via disabling interrupts not work on milti-processor architectures?

3. [Session 8] Write pseudo code to implement a “Too Much Milk” solution with two threads (robots) using the test_and_set() operation to implement mutual exclusion. Remember to define the Lock::Acquire() and Lock::Release() functions
4. [Session 9] The following is a modified solution for the consumer-producer problem, with bounded buffer. Does the solution work? If so, please defend your position. If not, please show a sequence of operations that leads to a failure of the solution.

semaphore nLoadedBuffers = 0;
// consumer waits on 0

semaphore nFreeBuffers = N;
// producer waits on 0

// N >= 2

semaphore mutex = 1;

// one thread waits when

// another thread is

// modifying the

// buffer

Producer() {

1. P(nFreeBuffers);

2. P(mutex);

3. // put 1 item in the buffer

4. V(nLoadedBuffers);

5. V(mutex);

}

Consumer() {

6. P(nLoadedBuffers);

7. P(mutex);

8. // take 1 item from the buffer

9. V(mutex);

10. V(nFreeBuffers);

}
