
Demand Paged Virtual
Memory

Sarah Diesburg
Operating Systems
CS 3430

Up to this point…

 We assume that a process needs to load all
of its address space before running
 e.g., 0x0 to 0xFFFFFFFF

 Observation: 90% of time is spent on 10% of
code

Demand Paging

 Demand paging: allows pages that are
referenced actively to be loaded into memory
 Remaining pages stay on disk
 Provides the illusion of infinite physical memory

Demand Paging Mechanism

 Page tables sometimes need to point to disk
locations (as opposed to memory locations)

 A table entry needs a present (valid) bit
 Present means a page is in memory
 Not present means that there is a page fault

Page Fault

 Hardware trap
 OS performs the following steps while running other

processes (analogy: firing and hiring someone)
 Choose a page
 If the page has been modified, write its contents to disk
 Change the corresponding page table entry and TLB entry
 Load new page into memory from disk
 Update page table entry
 Continue the thread

Transparent Page Faults

 Transparent (invisible) mechanisms
 A process does not know how it happened
 It needs to save the processor states and the

faulting instruction

More on Transparent Page Faults

 An instruction may have side effects
 Hardware needs to either unwind or finish off

those side effects

 ld r1, x
 // page fault

More on Transparent Page Faults

 Hardware designers need to understand virtual
memory
 Unwinding instructions not always possible
 Example: block transfer instruction

source begin

source end

block trans dest begin

dest end

Page Replacement Policies

 Random replacement: replace a random
page
+ Easy to implement in hardware (e.g., TLB)
- May toss out useful pages

 First in, first out (FIFO): toss out the oldest
page
+ Fair for all pages
- May toss out pages that are heavily used

More Page Replacement Policies

 Optimal (MIN): replaces the page that will
not be used for the longest time
+ Optimal
- Does not know the future

 Least-recently used (LRU): replaces the
page that has not been used for the longest
time
+ Good if past use predicts future use
- Tricky to implement efficiently

More Page Replacement Policies

 Least frequently used (LFU): replaces the
page that is used least often
 Tracks usage count of pages
+ Good if past use predicts future use
- Difficult to replace pages with high counts

Example

 A process makes references to 4 pages: A,
B, E, and R
 Reference stream: BEERBAREBEAR

 Physical memory size: 3 pages

Beer?

FIFO

Memory page B E E R B A R E B E A R

1 B
2
3

FIFO

Memory page B E E R B A R E B E A R

1 B
2 E
3

FIFO

Memory page B E E R B A R E B E A R

1 B
2 E *
3

FIFO

Memory page B E E R B A R E B E A R

1 B
2 E *
3 R

FIFO

Memory page B E E R B A R E B E A R

1 B *
2 E *
3 R

FIFO

Memory page B E E R B A R E B E A R

1 B *
2 E *
3 R

FIFO

Memory page B E E R B A R E B E A R

1 B * A
2 E *
3 R

FIFO

Memory page B E E R B A R E B E A R

1 B * A
2 E *
3 R *

FIFO

Memory page B E E R B A R E B E A R

1 B * A
2 E * *
3 R *

FIFO

Memory page B E E R B A R E B E A R

1 B * A
2 E * *
3 R *

FIFO

Memory page B E E R B A R E B E A R

1 B * A
2 E * * B
3 R *

FIFO

Memory page B E E R B A R E B E A R

1 B * A
2 E * * B
3 R *

FIFO

Memory page B E E R B A R E B E A R

1 B * A
2 E * * B
3 R * E

FIFO

Memory page B E E R B A R E B E A R

1 B * A *
2 E * * B
3 R * E

FIFO

Memory page B E E R B A R E B E A R

1 B * A *
2 E * * B
3 R * E

FIFO

Memory page B E E R B A R E B E A R

1 B * A * R
2 E * * B
3 R * E

FIFO

Memory page B E E R B A R E B E A R

1 B * A * R
2 E * * B
3 R * E

 7 page faults

FIFO

Memory page B E E R B A R E B E A R

1 B * A * R
2 E * * B
3 R * E

 4 compulsory cache misses

MIN

Memory page B E E R B A R E B E A R

1 B
2 E *
3 R

MIN

Memory page B E E R B A R E B E A R

1 B *
2 E *
3 R

MIN

Memory page B E E R B A R E B E A R

1 B *
2 E *
3 R

MIN

Memory page B E E R B A R E B E A R

1 B * A
2 E *
3 R

MIN

Memory page B E E R B A R E B E A R

1 B * A
2 E *
3 R *

MIN

Memory page B E E R B A R E B E A R

1 B * A
2 E * *
3 R *

MIN

Memory page B E E R B A R E B E A R

1 B * A
2 E * *
3 R *

MIN

Memory page B E E R B A R E B E A R

1 B * A
2 E * *
3 R * B

MIN

Memory page B E E R B A R E B E A R

1 B * A
2 E * * *
3 R * B

MIN

Memory page B E E R B A R E B E A R

1 B * A *
2 E * * *
3 R * B

MIN

Memory page B E E R B A R E B E A R

1 B * A * R
2 E * * *
3 R * B

MIN

Memory page B E E R B A R E B E A R

1 B * A * R
2 E * * *
3 R * B

 6 page faults

LRU

Memory page B E E R B A R E B E A R

1 B
2 E *
3 R

LRU

Memory page B E E R B A R E B E A R

1 B *
2 E *
3 R

LRU

Memory page B E E R B A R E B E A R

1 B *
2 E *
3 R

LRU

Memory page B E E R B A R E B E A R

1 B *
2 E * A
3 R

LRU

Memory page B E E R B A R E B E A R

1 B *
2 E * A
3 R *

LRU

Memory page B E E R B A R E B E A R

1 B *
2 E * A
3 R *

LRU

Memory page B E E R B A R E B E A R

1 B * E
2 E * A
3 R *

LRU

Memory page B E E R B A R E B E A R

1 B * E
2 E * A
3 R *

LRU

Memory page B E E R B A R E B E A R

1 B * E
2 E * A B
3 R *

LRU

Memory page B E E R B A R E B E A R

1 B * E *
2 E * A B
3 R *

LRU

Memory page B E E R B A R E B E A R

1 B * E *
2 E * A B
3 R *

LRU

Memory page B E E R B A R E B E A R

1 B * E *
2 E * A B
3 R * A

LRU

Memory page B E E R B A R E B E A R

1 B * E *
2 E * A B
3 R * A

LRU

Memory page B E E R B A R E B E A R

1 B * E *
2 E * A B R
3 R * A

LRU

Memory page B E E R B A R E B E A R

1 B * E *
2 E * A B R
3 R * A

 8 page faults

LFU

Memory page B E E R B A R E B E A R

1 B
2
3

LFU

Memory page B E E R B A R E B E A R

1 B
2 E
3

LFU

Memory page B E E R B A R E B E A R

1 B
2 E 2
3

LFU

Memory page B E E R B A R E B E A R

1 B
2 E 2
3 R

LFU

Memory page B E E R B A R E B E A R

1 B 2
2 E 2
3 R

LFU

Memory page B E E R B A R E B E A R

1 B 2
2 E 2
3 R A

LFU

Memory page B E E R B A R E B E A R

1 B 2
2 E 2
3 R A R

LFU

Memory page B E E R B A R E B E A R

1 B 2
2 E 2 3
3 R A R

LFU

Memory page B E E R B A R E B E A R

1 B 2 3
2 E 2 3
3 R A R

LFU

Memory page B E E R B A R E B E A R

1 B 2 3
2 E 2 3 4
3 R A R

LFU

Memory page B E E R B A R E B E A R

1 B 2 3
2 E 2 3 4
3 R A R A

LFU

Memory page B E E R B A R E B E A R

1 B 2 3
2 E 2 3 4
3 R A R A R

LFU

Memory page B E E R B A R E B E A R

1 B 2 3
2 E 2 3 4
3 R A R A R

 7 page faults

Does adding RAM always reduce misses?

 Yes for LRU and MIN
 Memory content of X pages ⊆ X + 1 pages

 No for FIFO
 Due to modulo math
 Belady’s anomaly: getting more page faults by

increasing the memory size

Belady’s Anomaly

Memory page A B C D A B E A B C D E

1 A D E *
2 B A * C
3 C B * D

 9 page faults

Belady’s Anomaly

Memory page A B C D A B E A B C D E

1 A * E D
2 B * A E
3 C B
4 D C

 10 page faults

Implementing LRU

 Perfect LRU requires a timestamp on each
reference to a cache page
 Too expensive

 Common practice
 Approximate the LRU behavior

Clock Algorithm

 Replaces an old page, but not the oldest
page

 Arranges physical pages in a circle
 With a clock hand

 Each page has a used bit
 Set to 1 on reference
 On page fault, sweep the clock hand

 If the used bit == 1, set it to 0
 If the used bit == 0, pick the page for replacement

Clock Algorithm

0
1

1

1

0

0

0

0

Clock Algorithm

0
1

0

1

0

0

0

0

Clock Algorithm

0
1

0

1

0

0

0

0

Clock Algorithm

0
1

0

0

0

0

0

0

Clock Algorithm

0
1

0

0

0

0

0

0

Clock Algorithm

0
1

0

0

0

0

0

0

replace

Clock Algorithm

0
1

0

0

1

0

0

0

Clock Algorithm

 The clock hand cannot sweep indefinitely
 Each bit is eventually cleared

 Slow moving hand
 Few page faults

 Quick moving hand
 Many page faults

Nth Chance Algorithm

 A variant of clocking algorithm
 A page has to be swept N times before being

replaced
 N  ∞, Nth Chance Algorithm  LRU
 Common implementation

 N = 2 for modified pages
 N = 1 for unmodified pages

States for a Page Table Entry

 Used bit: set when a page is referenced;
cleared by the clock algorithm

 Modified bit: set when a page is modified;
cleared when a page is written to disk

 Valid bit: set when a program can
legitimately use this entry

 Read-only: set for a program to read the
page, but not to modify it (e.g., code pages)

Thrashing

 Occurs when the memory is overcommitted
 Pages are still needed are tossed out

 Example
 A process needs 50 memory pages
 A machine has only 40 memory pages
 Need to constantly move pages between memory

and disk

Thrashing Avoidance

 Programs should minimize the maximum
memory requirement at a given time
 e.g., matrix multiplications can be broken into sub-

matrix multiplications
 OS figures out the memory needed for each

process
 Runs only the computations that can fit in RAM

Working Set

 A set of pages that was referenced in the
previous T seconds
 T  ∞, working set  size of the entire process

 Observation
 Beyond a certain threshold, more memory only

slightly reduces the number of page faults

Working Set

Memory page A B C D A B C D E F G H

1 A D C F
2 B A D G
3 C B E H

 LRU, 3 memory pages, 12 page faults

Working Set

Memory page A B C D A B C D E F G H

1 A * E
2 B * F
3 C * G
4 D * H

 LRU, 4 memory pages, 8 page faults

Working Set

Memory page A B C D A B C D E F G H

1 A * F
2 B * G
3 C * H
4 D *
5 E

 LRU, 5 memory pages, 8 page faults

Global and Local Replacement Policies

 Global replacement policy: all pages are in
a single pool (e.g., UNIX)
 One process needs more memory

 Grabs memory from another process that needs less

+ Flexible
- One process can drag down the entire system

 Per-process replacement policy: each
process has its own pool of pages

	Demand Paged Virtual Memory
	Up to this point…
	Demand Paging
	Demand Paging Mechanism
	Page Fault
	Transparent Page Faults
	More on Transparent Page Faults
	More on Transparent Page Faults
	Page Replacement Policies
	More Page Replacement Policies
	More Page Replacement Policies
	Example
	FIFO
	FIFO
	FIFO
	FIFO
	FIFO
	FIFO
	FIFO
	FIFO
	FIFO
	FIFO
	FIFO
	FIFO
	FIFO
	FIFO
	FIFO
	FIFO
	FIFO
	FIFO
	MIN
	MIN
	MIN
	MIN
	MIN
	MIN
	MIN
	MIN
	MIN
	MIN
	MIN
	MIN
	LRU
	LRU
	LRU
	LRU
	LRU
	LRU
	LRU
	LRU
	LRU
	LRU
	LRU
	LRU
	LRU
	LRU
	LRU
	LFU
	LFU
	LFU
	LFU
	LFU
	LFU
	LFU
	LFU
	LFU
	LFU
	LFU
	LFU
	LFU
	Does adding RAM always reduce misses?
	Belady’s Anomaly
	Belady’s Anomaly
	Implementing LRU
	Clock Algorithm
	Clock Algorithm
	Clock Algorithm
	Clock Algorithm
	Clock Algorithm
	Clock Algorithm
	Clock Algorithm
	Clock Algorithm
	Clock Algorithm
	Nth Chance Algorithm
	States for a Page Table Entry
	Thrashing
	Thrashing Avoidance
	Working Set
	Working Set
	Working Set
	Working Set
	Global and Local Replacement Policies

