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Up to this point… 

 We assume that a process needs to load all 
of its address space before running 
 e.g., 0x0 to 0xFFFFFFFF 

 Observation:  90% of time is spent on 10% of 
code 
 

 
 



Demand Paging 

 Demand paging:  allows pages that are 
referenced actively to be loaded into memory 
 Remaining pages stay on disk 
 Provides the illusion of infinite physical memory 

 



Demand Paging Mechanism 

 Page tables sometimes need to point to disk 
locations (as opposed to memory locations) 

 A table entry needs a present (valid) bit 
 Present means a page is in memory 
 Not present means that there is a page fault 



Page Fault 

 Hardware trap 
 OS performs the following steps while running other 

processes (analogy:  firing and hiring someone) 
 Choose a page 
 If the page has been modified, write its contents to disk 
 Change the corresponding page table entry and TLB entry 
 Load new page into memory from disk 
 Update page table entry 
 Continue the thread 

 



Transparent Page Faults 

 Transparent (invisible) mechanisms 
 A process does not know how it happened 
 It needs to save the processor states and the 

faulting instruction 
 



More on Transparent Page Faults 

 An instruction may have side effects 
 Hardware needs to either unwind or finish off 

those side effects 
  
 ld r1, x 
 // page fault 



More on Transparent Page Faults 

 Hardware designers need to understand virtual 
memory 
 Unwinding instructions not always possible 
 Example:  block transfer instruction 

source begin 

source end 

block trans dest begin 

dest end 



Page Replacement Policies 

 Random replacement:  replace a random 
page 
+ Easy to implement in hardware (e.g., TLB) 
- May toss out useful pages 

 First in, first out (FIFO): toss out the oldest 
page 
+ Fair for all pages 
- May toss out pages that are heavily used 



More Page Replacement Policies 

 Optimal (MIN):  replaces the page that will 
not be used for the longest time 
+ Optimal 
- Does not know the future 

 Least-recently used (LRU):  replaces the 
page that has not been used for the longest 
time 
+ Good if past use predicts future use 
- Tricky to implement efficiently 
 



More Page Replacement Policies 

 Least frequently used (LFU):  replaces the 
page that is used least often 
 Tracks usage count of pages 
+ Good if past use predicts future use 
- Difficult to replace pages with high counts 
 



Example 

 A process makes references to 4 pages:  A, 
B, E, and R 
 Reference stream:  BEERBAREBEAR 

 Physical memory size:  3 pages 

Beer? 



FIFO 

Memory page B E E R B A R E B E A R 

1 B 
2 
3 



FIFO 

Memory page B E E R B A R E B E A R 

1 B 
2 E 
3 



FIFO 

Memory page B E E R B A R E B E A R 

1 B 
2 E * 
3 



FIFO 

Memory page B E E R B A R E B E A R 

1 B 
2 E * 
3 R 



FIFO 

Memory page B E E R B A R E B E A R 

1 B * 
2 E * 
3 R 



FIFO 

Memory page B E E R B A R E B E A R 

1 B * 
2 E * 
3 R 



FIFO 

Memory page B E E R B A R E B E A R 

1 B * A 
2 E * 
3 R 



FIFO 

Memory page B E E R B A R E B E A R 

1 B * A 
2 E * 
3 R * 



FIFO 

Memory page B E E R B A R E B E A R 

1 B * A 
2 E * * 
3 R * 



FIFO 

Memory page B E E R B A R E B E A R 

1 B * A 
2 E * * 
3 R * 



FIFO 

Memory page B E E R B A R E B E A R 

1 B * A 
2 E * * B 
3 R * 



FIFO 

Memory page B E E R B A R E B E A R 

1 B * A 
2 E * * B 
3 R * 



FIFO 

Memory page B E E R B A R E B E A R 

1 B * A 
2 E * * B 
3 R * E 



FIFO 

Memory page B E E R B A R E B E A R 

1 B * A * 
2 E * * B 
3 R * E 



FIFO 

Memory page B E E R B A R E B E A R 

1 B * A * 
2 E * * B 
3 R * E 



FIFO 

Memory page B E E R B A R E B E A R 

1 B * A * R 
2 E * * B 
3 R * E 



FIFO 

Memory page B E E R B A R E B E A R 

1 B * A * R 
2 E * * B 
3 R * E 

 7 page faults 



FIFO 

Memory page B E E R B A R E B E A R 

1 B * A * R 
2 E * * B 
3 R * E 

 4 compulsory cache misses 



MIN 

Memory page B E E R B A R E B E A R 

1 B 
2 E * 
3 R 



MIN 

Memory page B E E R B A R E B E A R 

1 B * 
2 E * 
3 R 



MIN 

Memory page B E E R B A R E B E A R 

1 B * 
2 E * 
3 R 



MIN 

Memory page B E E R B A R E B E A R 

1 B * A 
2 E * 
3 R 



MIN 

Memory page B E E R B A R E B E A R 

1 B * A 
2 E * 
3 R * 



MIN 

Memory page B E E R B A R E B E A R 

1 B * A 
2 E * * 
3 R * 



MIN 

Memory page B E E R B A R E B E A R 

1 B * A 
2 E * * 
3 R * 



MIN 

Memory page B E E R B A R E B E A R 

1 B * A 
2 E * * 
3 R * B 



MIN 

Memory page B E E R B A R E B E A R 

1 B * A 
2 E * * * 
3 R * B 



MIN 

Memory page B E E R B A R E B E A R 

1 B * A * 
2 E * * * 
3 R * B 



MIN 

Memory page B E E R B A R E B E A R 

1 B * A * R 
2 E * * * 
3 R * B 



MIN 

Memory page B E E R B A R E B E A R 

1 B * A * R 
2 E * * * 
3 R * B 

 6 page faults 



LRU 

Memory page B E E R B A R E B E A R 

1 B 
2 E * 
3 R 



LRU 

Memory page B E E R B A R E B E A R 

1 B * 
2 E * 
3 R 



LRU 

Memory page B E E R B A R E B E A R 

1 B * 
2 E * 
3 R 



LRU 

Memory page B E E R B A R E B E A R 

1 B * 
2 E * A 
3 R 



LRU 

Memory page B E E R B A R E B E A R 

1 B * 
2 E * A 
3 R * 



LRU 

Memory page B E E R B A R E B E A R 

1 B * 
2 E * A 
3 R * 



LRU 

Memory page B E E R B A R E B E A R 

1 B * E 
2 E * A 
3 R * 



LRU 

Memory page B E E R B A R E B E A R 

1 B * E 
2 E * A 
3 R * 



LRU 

Memory page B E E R B A R E B E A R 

1 B * E 
2 E * A B 
3 R * 



LRU 

Memory page B E E R B A R E B E A R 

1 B * E * 
2 E * A B 
3 R * 



LRU 

Memory page B E E R B A R E B E A R 

1 B * E * 
2 E * A B 
3 R * 



LRU 

Memory page B E E R B A R E B E A R 

1 B * E * 
2 E * A B 
3 R * A 



LRU 

Memory page B E E R B A R E B E A R 

1 B * E * 
2 E * A B 
3 R * A 



LRU 

Memory page B E E R B A R E B E A R 

1 B * E * 
2 E * A B R 
3 R * A 



LRU 

Memory page B E E R B A R E B E A R 

1 B * E * 
2 E * A B R 
3 R * A 

 8 page faults 



LFU 

Memory page B E E R B A R E B E A R 

1 B 
2 
3 



LFU 

Memory page B E E R B A R E B E A R 

1 B 
2 E 
3 



LFU 

Memory page B E E R B A R E B E A R 

1 B 
2 E 2 
3 



LFU 

Memory page B E E R B A R E B E A R 

1 B 
2 E 2 
3 R 



LFU 

Memory page B E E R B A R E B E A R 

1 B 2 
2 E 2 
3 R 



LFU 

Memory page B E E R B A R E B E A R 

1 B 2 
2 E 2 
3 R A 



LFU 

Memory page B E E R B A R E B E A R 

1 B 2 
2 E 2 
3 R A R 



LFU 

Memory page B E E R B A R E B E A R 

1 B 2 
2 E 2 3 
3 R A R 



LFU 

Memory page B E E R B A R E B E A R 

1 B 2 3 
2 E 2 3 
3 R A R 



LFU 

Memory page B E E R B A R E B E A R 

1 B 2 3 
2 E 2 3 4 
3 R A R 



LFU 

Memory page B E E R B A R E B E A R 

1 B 2 3 
2 E 2 3 4 
3 R A R A 



LFU 

Memory page B E E R B A R E B E A R 

1 B 2 3 
2 E 2 3 4 
3 R A R A R 



LFU 

Memory page B E E R B A R E B E A R 

1 B 2 3 
2 E 2 3 4 
3 R A R A R 

 7 page faults 



Does adding RAM always reduce misses? 

 Yes for LRU and MIN 
 Memory content of X pages ⊆ X + 1 pages 

 No for FIFO 
 Due to modulo math 
 Belady’s anomaly:  getting more page faults by 

increasing the memory size 



Belady’s Anomaly 

Memory page A B C D A B E A B C D E 

1 A D E * 
2 B A * C 
3 C B * D 

 9 page faults 



Belady’s Anomaly 

Memory page A B C D A B E A B C D E 

1 A * E D 
2 B * A E 
3 C B 
4 D C 

 10 page faults 



Implementing LRU 

 Perfect LRU requires a timestamp on each 
reference to a cache page 
 Too expensive  

 Common practice 
 Approximate the LRU behavior 



Clock Algorithm 

 Replaces an old page, but not the oldest 
page 

 Arranges physical pages in a circle 
 With a clock hand 

 Each page has a used bit 
 Set to 1 on reference 
 On page fault, sweep the clock hand 

 If the used bit == 1, set it to 0 
 If the used bit == 0, pick the page for replacement 



Clock Algorithm 

0 
1 

1 

1 

0 

0 

0 

0 



Clock Algorithm 

0 
1 

0 

1 

0 

0 

0 

0 



Clock Algorithm 

0 
1 

0 

1 

0 

0 

0 

0 



Clock Algorithm 

0 
1 

0 

0 

0 

0 

0 

0 



Clock Algorithm 

0 
1 

0 

0 

0 

0 

0 

0 



Clock Algorithm 

0 
1 

0 

0 

0 

0 

0 

0 

replace 



Clock Algorithm 
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1 

0 

0 

1 

0 

0 

0 



Clock Algorithm 

 The clock hand cannot sweep indefinitely 
 Each bit is eventually cleared 

 Slow moving hand 
 Few page faults 

 Quick moving hand 
 Many page faults 



Nth Chance Algorithm 

 A variant of clocking algorithm 
 A page has to be swept N times before being 

replaced 
 N  ∞, Nth Chance Algorithm  LRU 
 Common implementation 

 N = 2 for modified pages 
 N = 1 for unmodified pages 

 



States for a Page Table Entry 

 Used bit:  set when a page is referenced; 
cleared by the clock algorithm 

 Modified bit:  set when a page is modified; 
cleared when a page is written to disk 

 Valid bit:  set when a program can 
legitimately use this entry 

 Read-only:  set for a program to read the 
page, but not to modify it (e.g., code pages) 



Thrashing 

 Occurs when the memory is overcommitted 
 Pages are still needed are tossed out 

 Example 
 A process needs 50 memory pages 
 A machine has only 40 memory pages 
 Need to constantly move pages between memory 

and disk 
 



Thrashing Avoidance 

 Programs should minimize the maximum 
memory requirement at a given time 
 e.g., matrix multiplications can be broken into sub-

matrix multiplications  
 OS figures out the memory needed for each 

process 
 Runs only the computations that can fit in RAM 



Working Set 

 A set of pages that was referenced in the 
previous T seconds 
 T  ∞, working set  size of the entire process 

 Observation 
 Beyond a certain threshold, more memory only 

slightly reduces the number of page faults 



Working Set 

Memory page A B C D A B C D E F G H 

1 A D C F 
2 B A D G 
3 C B E H 

 LRU, 3 memory pages, 12 page faults 



Working Set 

Memory page A B C D A B C D E F G H 

1 A * E 
2 B * F 
3 C * G 
4 D * H 

 LRU, 4 memory pages, 8 page faults 



Working Set 

Memory page A B C D A B C D E F G H 

1 A * F 
2 B * G 
3 C * H 
4 D * 
5 E 

 LRU, 5 memory pages, 8 page faults 



Global and Local Replacement Policies 

 Global replacement policy:  all pages are in 
a single pool (e.g., UNIX) 
 One process needs more memory 

 Grabs memory from another process that needs less 

+ Flexible 
- One process can drag down the entire system 

 Per-process replacement policy:  each 
process has its own pool of pages 
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