
Chapter 5
 Transport Layer Introduction

Networking
CS 3470, Section 1

Chapter 5: Transport Layer

 Our goals:
 understand principles

behind transport layer
services:
 multiplexing/demultiple

xing
 reliable data transfer
 flow control
 congestion control

 learn about transport

layer protocols in the
Internet:
 UDP: connectionless

transport
 TCP: connection-

oriented transport
 TCP congestion

control

Packet Encapsulation

3 ** Creative Commons: http://en.wikipedia.org/wiki/File:UDP_encapsulation.svg

Transport services and protocols

 provide logical communication
between app processes
running on different hosts

 transport protocols run in end
systems
 send side: breaks app messages

into segments, passes to
network layer

 rcv side: reassembles segments
into messages, passes to app
layer

 more than one transport
protocol available to apps
 Internet: TCP and UDP

application
transport
network
data link
physical

application
transport
network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

Transport vs. network layer

 Why can’t we just use the network layer to
send messages from host to host?

End-to-end Protocols

 Common properties that a transport protocol
can be expected to provide
 Guarantees message delivery
 Delivers messages in the same order they were sent
 Delivers at most one copy of each message
 Supports arbitrarily large messages
 Supports synchronization between the sender and

the receiver
 Allows the receiver to apply flow control to the sender
 Supports multiple application processes on each host

End-to-end Protocols

 Typical limitations of the network on which
transport protocol will operate
 Drop messages
 Reorder messages
 Deliver duplicate copies of a given message
 Limit messages to some finite size
 Deliver messages after an arbitrarily long delay

Internet transport-layer protocols

 reliable, in-order
delivery (TCP)
 congestion control
 flow control
 connection setup

 unreliable, unordered
delivery: UDP
 no-frills extension of

“best-effort” IP
 services not available:

 delay guarantees
 bandwidth guarantees

application
transport
network
data link
physical

application
transport
network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

UDP: User Datagram Protocol
[RFC 768]
 “no frills,” “bare bones” Internet transport

protocol
 “best effort” service, UDP segments may be:
 lost
 delivered out of order to app

 connectionless:
 no handshaking between UDP sender, receiver
 each UDP segment handled independently of

others

 9

UDP: User Datagram Protocol
[RFC 768]
 Why is there a UDP?
 no connection establishment (which can add

delay)
 simple: no connection state at sender, receiver
 small segment header
 no congestion control: UDP can blast away as

fast as desired

10

UDP: more

 often used for streaming
multimedia apps
 loss tolerant
 rate sensitive

 other UDP uses
 DNS
 SNMP

 reliable transfer over UDP: add
reliability at application layer
 application-specific error

recovery!

source port # dest port #

32
bits

Application
data

(message)

UDP segment
format

length checksum

Length, in
bytes of

UDP
segment,
including

header

UDP checksum

 Sender:
 treat segment contents

as sequence of 16-bit
integers

 checksum: addition
(1’s complement sum)
of segment contents

 sender puts checksum
value into UDP
checksum field

 Receiver:
 compute checksum of

received segment
 check if computed

checksum equals
checksum field value:
 NO - error detected
 YES - no error detected.

But maybe errors
nonetheless?

Goal: detect “errors” (e.g., flipped bits) in transmitted segment.
This is the IP checksum from earlier in the course!

Internet Checksum Example

 Note
When adding numbers, a carryout from the most

significant bit needs to be added to the result
 Example: add two 16-bit integers

1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 0
1 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1

wraparound

sum
checksum

Internet Checksum Example

 What if we are adding three numbers?
 Add first two numbers
 Deal with carryout from most significant bit (if

necessary)
 Add sum of first two numbers with third number
 Deal with carryout from most significant bit (if

necessary)
 Obtain the 1’s compliment by converting all 0s to

1s and all 1s to 0s (flip the bits)
 Same general algorithm for adding > 3

numbers

14

Internet Checksum Example

 At the receiver, all 16-bit words are added
(including the checksum)

 If no errors introduced, the sum at the
receiver will be all 1’s
 If any of the bits are zero, then we know error(s)

have been introduced into the packet

15

Internet Checksum Example

 UDP checksum takes as input:
 UDP header
 Contents of message body
 Pseudoheader
 3 fields from the IP packet: protocol number, src IP

address, dst IP address
 UDP length field

 Motivation of the pseudoheader is to verify
this message has been delivered between
correct two endpoints

16

Reliable Byte Stream (TCP)

 In contrast to UDP, Transmission Control
Protocol (TCP) offers the following services
 Reliable
 Connection oriented
 Byte-stream service

Flow control VS Congestion control

 Flow control involves preventing senders from
overrunning the capacity of the receivers

 Congestion control involves preventing too
much data from being injected into the network,
thereby causing switches or links to become
overloaded

End-to-end Issues

 At the heart of TCP is the sliding window
algorithm (discussed in Chapter 2)

 As TCP runs over the Internet rather than a
point-to-point link, the following issues need to
be addressed by the sliding window algorithm
 TCP supports logical connections between

processes that are running on two different
computers in the Internet

 TCP connections are likely to have widely different
RTT times

 Packets may get reordered in the Internet

End-to-end Issues

 TCP needs a mechanism using which each side of a
connection will learn what resources the other side is
able to apply to the connection

 TCP needs a mechanism using which the sending
side will learn the capacity of the network

TCP Segment

 TCP on the source host buffers enough bytes
from the sending process to fill a reasonably
sized packet and then sends this packet to its
peer on the destination host.

 TCP on the destination host then empties the
contents of the packet into a receive buffer, and
the receiving process reads from this buffer at
its leisure.

 The packets exchanged between TCP peers are
called segments.

TCP Segment

How TCP manages a byte stream.

TCP segment structure

source port # dest port #

32 bits

application
data

(variable length)

sequence number
acknowledgement number

Receive window
Urg data

pnter
checksum

F S R P A U head
len

not
used

Options (variable length)

URG: urgent data
(generally not used)

ACK: ACK #
valid

PSH: push data now
(generally not used)

RST, SYN, FIN:
connection estab
(setup, teardown

commands)

bytes
rcvr
willing
to accept

counting
by bytes
of data
(not
segments!)

Internet
checksum

(as in
UDP)

TCP Header

 The SrcPort and DstPort fields identify the source and
destination ports, respectively.

 The Acknowledgment, SequenceNum, and
AdvertisedWindow fields are all involved in TCP’s
sliding window algorithm.

 Because TCP is a byte-oriented protocol, each byte of
data has a sequence number; the SequenceNum field
contains the sequence number for the first byte of data
carried in that segment.

 The Acknowledgment and AdvertisedWindow fields
carry information about the flow of data going in the
other direction.

TCP Header

 The 6-bit Flags field is used to relay control information
between TCP peers.

 The SYN and FIN flags are used when establishing and
terminating a TCP connection, respectively.

 The ACK flag is set any time the Acknowledgment field
is valid, implying that the receiver should pay attention
to it.

TCP Header

 The URG flag signifies that this segment contains
urgent data.

 The PUSH flag signifies that the sender invoked the
push operation, which indicates to the receiving side of
TCP that it should notify the receiving process of this
fact.

 Finally, the RESET flag signifies that the receiver has
become confused

TCP Header

 Finally, the Checksum field is used in exactly the same
way as for UDP
 Computed over the TCP header, the TCP data, and the

pseudoheader, which is made up of the source address,
destination address, and length fields from the IP header.

Multiplexing/demultiplexing

 What do these words mean, again?

28

Multiplexing/demultiplexing

 What do these words mean, again?
 Multiplexing – combines multiple streams of

information for transmission over a shared
medium

 Demultiplexing – takes combined streams
of information and separates the streams
 Often abbreviated as demux

29

Multiplexing/demultiplexing

application

transport

network

link

physical

P1 application

transport

network

link

physical

application

transport

network

link

physical

P2 P3 P4 P1

host 1 host 2 host 3

= process = socket

delivering received segments
to correct socket

Demultiplexing at rcv host:
gathering data from multiple
sockets, enveloping data with
header (later used for
demultiplexing)

Multiplexing at send host:

How demultiplexing works

 host receives IP datagrams
 each datagram has source IP

address, destination IP address
 each datagram carries 1

transport-layer segment
 each segment has source,

destination port number
(recall: well-known port numbers
for specific applications)

 host uses IP addresses & port
numbers to direct segment to
appropriate socket

source port

dest port

32
bits

application
data

(message)

other header fields

TCP/UDP segment
format

Connectionless demultiplexing

 Create sockets with port
numbers:

DatagramSocket mySocket1 = new
DatagramSocket(99111);

DatagramSocket mySocket2 = new
DatagramSocket(99222);

 UDP socket identified by
two-tuple:

(dest IP address, dest port number)

 When host receives UDP
segment:
 checks destination port

number in segment
 directs UDP segment to

socket with that port
number

 IP datagrams with
different source IP
addresses and/or source
port numbers directed to
same socket

Connectionless demux (cont)

 DatagramSocket serverSocket = new
DatagramSocket(6428);

Source Ports and Destination
Ports
 How does UDP (or TCP) know which source

and destination ports to use?

34

Source Ports and Destination
Ports
 How does UDP (or TCP) know which source

and destination ports to use?
 Servers tend to listen on “well-known ports”
 We can utilize this information
 Client uses well-known destination port number

(e.g. port 80 to connect to web server)
 Server uses well-known source port number to

listen for incoming connections (e.g. port 80 if
web server)

35

Source Ports and Destination
Ports
 What about the client’s source port?
 Operating systems pick a random, temporary

port
 Guaranteed to be > 1024
 IANA suggests between 49,152-65,535

 What about the server’s destination port?

36

Connection-oriented demux

 TCP socket identified by 4-tuple:
 source IP address
 source port number
 dest IP address
 dest port number

 recv host uses all four values to direct
segment to appropriate socket

Connection-oriented demux

 Server host may support many simultaneous
TCP sockets:
 each socket identified by its own 4-tuple

 Web servers have different sockets for each
connecting client
 non-persistent HTTP will have different socket for

each request

38

Connection-oriented demux (cont)

Connection-oriented demux:
Threaded Web Server

	Chapter 5�	Transport Layer Introduction
	Chapter 5: Transport Layer
	Packet Encapsulation
	Transport services and protocols
	Transport vs. network layer
	End-to-end Protocols
	End-to-end Protocols
	Internet transport-layer protocols
	UDP: User Datagram Protocol [RFC 768]
	UDP: User Datagram Protocol [RFC 768]
	UDP: more
	UDP checksum
	Internet Checksum Example
	Internet Checksum Example
	Internet Checksum Example
	Internet Checksum Example
	Reliable Byte Stream (TCP)
	Flow control VS Congestion control
	End-to-end Issues
	End-to-end Issues
	TCP Segment
	TCP Segment
	TCP segment structure
	TCP Header
	TCP Header
	TCP Header
	TCP Header
	Multiplexing/demultiplexing
	Multiplexing/demultiplexing
	Multiplexing/demultiplexing
	How demultiplexing works
	Connectionless demultiplexing
	Connectionless demux (cont)
	Source Ports and Destination Ports
	Source Ports and Destination Ports
	Source Ports and Destination Ports
	Connection-oriented demux
	Connection-oriented demux
	Connection-oriented demux (cont)
	Connection-oriented demux: Threaded Web Server

