Getting Connected

Chapter 2, Part 2

Networking
CS 3470, Section 1
Sarah Diesburg

Five Problems

\square Encoding/decoding
\square Framing

- Error Detection
- Error Correction
\square Media Access

Five Problems

- Encoding/decoding
- Framing
- Error Detection
- Error Correction
- Media Access

Why Error Detection?

Bit errors are sometimes introduced into frames
\square Some mechanism is needed to detect these errors!
\times Otherwise, strange file corruptions could occur on the receiver's end

Basic Idea

\square Add redundant information to a frame \times Can be used to determine if errors
\square Want redundant information to be as small as possible
\square Redundant information is often called errordetecting codes or checksums

Error Detection/Correction

-2-D Checks

- Internet checksums
- Cyclic Redundancy Check

Error Detection/Correction

- 2-D Checks
\times Divides bytes into even rows and columns (e.g. 8 rows of 8 bytes)
\times Computes even parity across rows and down columns
\times Extra parity bits are sent along with the data
$\diamond \#$ of parity bits scales up with the amount of data

Error Detection/Correction

-2-D Checks

0	0	1	1	0	0	1	1
1	0	1	0	1	0	0	1
1	1	0	1	1	0	1	1
0	0	0	0	0	0	0	1
1	1	1	1	1	0	0	0
1	0	0	1	0	1	1	1
0	0	1	0	0	0	0	0
1	1	1	0	0	0	0	1

Error Detection/Correction

-2-D Checks

| 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 |
| 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
| 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 |
| 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 |
| 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 |
| 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 |
| 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 |

Error Detection/Correction

-2-D Checks : Error

| 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 |
| 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
| 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 |
| 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 |
| 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 |
| 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 |
| 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |

Error Detection/Correction

-2-D Checks
\times Catches all 1,2,3-bit errors
\times Catches most 4-bit errors

Error Detection/Correction

\square Internet Checksums
\square View payload as 16-bit integers
\square Sum up payload, using 1's complement, with carry wraparound.

Transmit payload along with the result for validation on the receiving side.

E Easy to implement in software/hardware (see the code-snippet in the text)

Error Detection/Correction

\square Internet Checksums
\square Negative number $-x$ is x with all bits inverted
\square When two numbers are added, the carry-on is added to the result
a Example: -15 + 16 (assume 8-bit)

$$
15=00001111 \rightarrow-15=11110000
$$

$$
16=\underline{00010000}
$$

100000000
$+$
$\frac{1}{00000001}$
$-15+16=1$

Error Detection/Correction

\square Internet Checksums
\square Usability
$\times 16$ bits for messages of any length
\times Strength of error-detection not as good as 2D
\diamond Pair of single-bit errors could go unnoticed

Error Detection/Correction

\square Cyclic Redundancy Check
\times Based upon polynomial division
\times Bit strings are considered to represent the coefficients of a polynomial:
$\mathrm{m}+1$ bits «=> degree m polynomial
\checkmark eg:

$$
\begin{aligned}
01101101 & \Leftrightarrow 0 x^{7}+1 x^{6}+1 x^{5}+0 x^{4}+1 x^{3}+1 x^{2}+0 x^{1}+1 x^{0} \\
& \Leftrightarrow x^{6}+x^{5}+x^{3}+x^{2}+1
\end{aligned}
$$

\times Long division is carried out as usual, but polynomial subtraction is done modulo-2:
\diamond eg:

$$
\left(x^{6}+x^{5}+x^{3}+x^{2}+1\right)-\left(x^{6}+x^{4}+x^{3}+x+1\right)=? ?
$$

Error Detection/Correction

\square Cyclic Redundancy Check
\times Based upon polynomial division
\times Bit strings are considered to represent the coefficients of a polynomial:
$\mathrm{m}+1$ bits «=> degree m polynomial
\checkmark eg:

$$
\begin{aligned}
01101101 & \Leftrightarrow 0 x^{7}+1 x^{6}+1 x^{5}+0 x^{4}+1 x^{3}+1 x^{2}+0 x^{1}+1 x^{0} \\
& \Leftrightarrow x^{6}+x^{5}+x^{3}+x^{2}+1
\end{aligned}
$$

\times Long division is carried out as usual, but polynomial subtraction is done modulo-2:

$$
\begin{aligned}
& \text { eg: } \\
& \left(x^{6}+x^{5}+x^{3}+x^{2}+1\right)-\left(x^{6}+x^{4}+x^{3}+x+1\right)=x^{5}+x^{4}+x^{2}+x
\end{aligned}
$$

Error Detection/Correction

- Cyclic Redundancy Check
\times Long division is carried out as usual, but polynomial subtraction is done modulo-2:
\diamond eg:

$$
\left(x^{6}+x^{5}+x^{3}+x^{2}+1\right)-\left(x^{6}+x^{4}+x^{3}+x+1\right)=x^{5}+x^{4}+x^{2}+
$$ x

$\diamond 1-0=1$
$\diamond 0-1=1$ (modulo 2 , remember)
$\diamond 1+1=0$ (modulo 2 !)
$\diamond 1-1=0$
$\diamond 0-0=0$
\times Hey! This is just XOR. That makes it easy.

Error Detection/Correction

- Cyclic Redundancy Check
\times Sender and receiver have a common generator polynomial (determined in advance, by the protocol).
$\times \mathrm{Eg}$:
$\checkmark 1101011011$ (Frame) $\quad x^{9}+x^{8}+x^{6}+x^{4}+x^{3}+x+1$
$\diamond 10011 \quad$ (Generator) $x^{4}+x+1$
\times Procedure:
\diamond degree(G) $=r$ (hence $r+1$ bits)
Δ degree $(M)=m$ (or, $m+1$ bits in frame)
\checkmark Promote the frame's polynomial by r bits, so that it is degree $m+r$. I.e., $x^{r} M(x)$ is the polynomial we're working with.

Error Detection/Correction

- Cyclic Redundancy Check
\times Procedure:
\diamond degree $(G)=r$ (hence $r+1$ bits)
\diamond degree $(M)=m$ (or, $m+1$ bits in frame)
\diamond Promote the frame's polynomial by r bits, so that it is degree $m+r$. I.e., $x^{r} M(x)$ is the polynomial we're working with.
\diamond Divide this polynomial by $G(x)$ using polynomial division.
\diamond Subtract the remainder from $x^{r} M(x)$ using modulo-2 subtraction. The result is the transmission payload $T(x)$

Error Detection/Correction

$10011<=>G(x)=x^{4}+x+1$
$1101011011 \Leftrightarrow M(x)=x^{9}+x^{8}+x^{6}+x^{4}+x^{3}+x+1$

10011 |11010110110000
Promote by x^{r}; $x^{r} M(x)$

Error Detection/Correction

Error Detection/Correction

Error Detection/Correction

$\left.10011$| 110 |
| :---: |
| $\mid 11010110110000$ |
| 10011 |
| 10011 |
| 10011 | \right\rvert\,

Error Detection/Correction

10011 | 1100 |
| :---: |
| $\mid 11010110110000$ |
| 10011 |
| 10011 |
| 10011 |
| |

Error Detection/Correction

11000
10011 |11010110110000 10011
10011
10011
1011

Error Detection/Correction

110000
10011 |11010110110000 10011
10011
10011
10110

Error Detection/Correction

1100001
10011 |11010110110000 10011
10011
10011
\(\begin{array}{r}10110 \mid
10011 \mid
\hline 1010\end{array}\)

Error Detection/Correction

11000010
10011 |11010110110000 10011
10011
10011
10110 10011 10100

Error Detection/Correction

```
110000101
10011 |11010110110000 10011
10011
10011
10110
10011
10100
10011
1110 - Remainder
```


Error Detection/Correction

1100001011 - Discarded
 10011 |11010110110000 10011
 10011
 10011
 10110
 10011
 10100
 10011
 1110

Error Detection/Correction

$$
T(x)=x^{r} M(x)-r(x)
$$

11010110110000

- 1110

11010110111110 A simple XOR

Error Detection/Correction

\square So what does the receiver do?
$x G(x)$ should divide evenly into $T(x)$!
\diamond If it doesn't, receiver asks for frame again or tries to correct the errors
\square Where does $G(x)$ come from?
x Looked up ahead of time
x Pick $G(x)$ so that it cannot easily be divided evenly
$\square C R C-32$ (for TCP)
$G(x)=x^{32}+x^{26}+x^{23}+x^{22}+x^{16}+x^{12}+x^{11}+x^{10}+x^{8}+x^{7}+x^{5}+x^{4}+x^{2}+x+1$

