Computer Technology

Built from two types of components plus interconnection:

<table>
<thead>
<tr>
<th>Gates</th>
<th>A</th>
<th>B</th>
<th>OR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binary → Binary Function → Output</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>Inputs</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td></td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td></td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>

Memory Cells:

- Input
- One Bit Storage
- Output
- Read/Write control signal

Circuit - collection of gates and/or memory cells to perform some function

Computer Generations

1st Generation - vacuum tubes with wires for interconnection (one gate per vacuum tube)

Examples: ENIAC - 1943-46 Army’s Ballistics Lab Mauchly/Eckert (U. of Penn.) 1st general-purpose electronic digital computer
- 30 tons, 15,000 sq. ft., 18,000 vacuum tubes, 140 KW, 5000 adds/sec
- Programmed with wires and switches
- 1945-52 - IAS John von Neumann (Princeton) used stored-program concept

2nd Generation - transistors - solid state device made from silicon, but single gate each
- 10,000 to 100,000 transistors soldered to circuit board

Advantages: improved speed, reliability, size, power consumption

Some system software: early OS and High-level programming languages

3rd Generation - Small-scale integrated circuits (ICs)

Many gates on same wafer of silicon (chip) and connected to form circuits.

Advantages:
1) cheaper since the cost per chip the same, but fewer needed since more powerful
2) denser chips → shorter connections → faster
3) smaller computers → used in more places
4) reduced power and cooling consumption
5) interconnections on ICs more reliable that interconnections between ICs

4th Generation - Large-scale ICs - microprocessor

Enough gates per chip to implement whole CPU
- Intel 4004 (1971) - 1st
- Intel 8080 (1974) - 1st general-purpose microprocessor
Moore’s Law

Gordon Moore - Intel cofounder (1965)

Predicted that gate density would double every year into near future.

This held true until early 1970s when the rate slowed to doubling every 18 months.

von Neumann Model: Stored-Program Concept

Instruction/Machine Cycle of stored-program computer - repeat all day
1. Fetch Instruction - read instruction pointed at by the program counter (PC) from memory into Instr. Reg. (IR)
2. Decode Instruction - figure out what kind of instruction was read
3. Fetch Operands - get operand values from the memory or registers
4. Execute Instruction - do some operation with the operands to get some result
5. Write Result - put the result into a register or in a memory location
(Note: Sometime during the above steps, the PC is updated to point to the next instruction.)

Today’s stored-program computers have the following characteristics:
–Three hardware systems:
 • A central processing unit (CPU)
 • A main memory system
 • An I/O system
–The capacity to carry out sequential instruction processing.
–A single data path between the CPU and main memory.
 • This single path is known as the von Neumann bottleneck.
 • Register File - store a small amount of data in the CPU close to the computation circuits
 • Level 1 (L1) and Level 2 (L2) caches on CPU store larger amounts of data and instruction on CPU

Programming Languages

<table>
<thead>
<tr>
<th>Machine Language</th>
<th>Assembly Language</th>
<th>High-Level Languages</th>
</tr>
</thead>
<tbody>
<tr>
<td>10100100</td>
<td>Load R3, Y</td>
<td>Compiler</td>
</tr>
<tr>
<td>10011011</td>
<td>Load R2, X</td>
<td>SUM = X+Y</td>
</tr>
<tr>
<td>00110011</td>
<td>Add R1,R2,R3</td>
<td></td>
</tr>
<tr>
<td>10011100</td>
<td>Store R1, SUM</td>
<td></td>
</tr>
</tbody>
</table>

Instruction Set Architecture (ISA)/Family of Computers
Several implementation of computer can run the same assembly/machine language with different cost/performance ratios.
Examples:
IBM 700/7000 Series (overhead)
Intel 486, Pentium I, II, III, IV (overhead)

Advantages of High-Level Programming Languages:
1) Portability - computer independent
2) Productivity - more and better software in less time
3) Application specific languages
Computer Networking

1962 - RAND (Research and Development a nonprofit institution) and Paul Baran begin research into packet switching.

1965 - ARPA - Advanced Research Projects Agency sponsors networking research

1969 - ARPA commissioned a Cambridge, Mass. company (Bolt, Beranek, and Newman) to build first packet switches. Later, four computers connected.

Soon networking bandwidth will be unlimited???

Computer Applications

Where are applications going???
• Level 6: The User Level
 – Program execution and user interface level.
 – The level with which we are most familiar.

• Level 5: High-Level Language Level
 – The level with which we interact when we write programs in languages such as C, Pascal, Lisp, and Java.

• Level 4: Assembly Language Level
 – Acts upon assembly language produced from Level 5, as well as instructions programmed directly at this level.

• Level 3: System Software Level
 – Controls executing processes on the system.
 – Protects system resources.
 – Assembly language instructions often pass through Level 3 without modification.

• Level 2: Machine Level
 – Also known as the Instruction Set Architecture (ISA) Level.
 – Consists of instructions that are particular to the architecture of the machine.
 – Programs written in machine language need no compilers, interpreters, or assemblers.

• Level 1: Control Level
 – A control unit decodes and executes instructions and moves data through the system.
 – Control units can be microprogrammed or hardwired.
 – A microprogram is a program written in a low-level language that is implemented by the hardware.
 – Hardwired control units consist of hardware that directly executes machine instructions.

• Level 0: Digital Logic Level
 – This level is where we find digital circuits (the chips).
 – Digital circuits consist of gates and wires.
 – These components implement the mathematical logic of all other levels.