1. Sum the following binary (base 2) numbers

\[
\begin{array}{c}
10011_2 \\
+10110_2 \\
\hline
10011_2 \\
\end{array}
\]

\[
\begin{array}{c}
101101_2 \\
+110111_2 \\
\hline
101001_2 \\
\end{array}
\]

2. Complete the Full-Adder truth table for the sum \(s_i\) and carry-out \(c_{i+1}\) functions.

<table>
<thead>
<tr>
<th>(x_i)</th>
<th>(y_i)</th>
<th>(c_i)</th>
<th>(s_i)</th>
<th>(c_{i+1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

3. Use k-maps to minimize the sum \(s_i\) and carry-out \(c_{i+1}\) functions of the Full-Adder:

4. For the one-bit Full-Adder, how many gate delays are needed before the carry-out \(c_{i+1}\) wire is correct?

5. A 32-bit, ripple-adder is made up of a collection of single-bit Full-Adders connected together as shown below:

How many gate delays are needed before \(c_{32}\) is correct?
6. To speed up the calculation of the carry-out (C_{i+1}) signals, consider constructing a 32-bit adder using two-bit adders as shown in:

If c_{i+1} is calculated directly from the inputs as $c_{i+1} = x_i y_i + x_i x_{i-1} y_{i+1} + x_i x_{i+1} c_{i-1} + x_i y_{i-1} c_{i+1}$, then how many gate delays would be needed to calculate the c_{i+1} signal in a two-bit adder?

7. What would be the total number of gate delays in a 32-bit adder before the c_{32} signal is generated correctly if two-bit adders were used?

8. What would be the total number of gate delays in a 32-bit adder before the c_{32} signal is generated correctly if three-bit adders were used (10 three-bit adders and a 2-bit adder)?

9. What would be the total number of gate delays in a 32-bit adder before the c_{32} signal is generated correctly if four-bit adders were used?