Team #:____ Absent:

Name:

1. Assuming 4-bit BINARY numbers, perform the following additions:

a)for unsigned numbers:	$\begin{array}{r} 0100_2 (4_{10}) \\ + \ \underline{0110}_2 (6_{10}) \end{array}$	$1001_{2} (9_{10}) + 1010_{2} (10_{10})$))
b) for signed numbers: (two's compliment)	$0100_2 (4_{10})$ + <u>0110_2</u> (6_{10})	$0100_2 (4_{10}) + 1010_2 (-6_{10})$	$1100_{2} (-4_{10}) + 1010_{2} (-6_{10})$

2. For **4-bit unsigned numbers**, when do we have overflow and get the wrong result during addition? (Hint: think about the carry bits into and/or out of the most-significant bit)

3. a) For **4-bit signed numbers**, complete the following table about signed overflow:

Sign of Operands for addition		Expected Sign	Wrong Sign
		of Result	of Result
Operand 1	Operand 2		(indicates overflow)
+	+		
+	_	These two rows cannot cause	
-	+	signed overflow in addition	
-	-		

b) For **4-bit signed numbers**, when do we have overflow and get the wrong result during addition? (Hint: think about the carry bits into and/or out of the most-significant bit)

4. How would you subtract two signed, 2's-complement numbers? Try the following:

01102 (610	$0011_2 (+3_1)$	$1111_2 (-1_{10})$
$- 0111_2 (7_{10})$	$- 1111_2$ (-1_{10})	$- 0011_2 (+3_{10})$

5. Use Booth's algorithm to calculate the 8-bit product of $0110_2 \times 1101_2$.

Multiplicand	"Initial Product"	"Multiplier"	"Previous bit"
0110	0000		0
Multiplicand			

Multiplicand