\qquad
Absent:

1. Assuming 4-bit BINARY numbers, perform the following additions:
a)for unsigned numbers: $0100_{2}\left(4_{10}\right) \quad 1001_{2}\left(9_{10}\right)$

$$
+\underline{0110_{2}}\left(6_{10}\right)+\underline{1010_{2}}\left(10_{10}\right)
$$

b) for signed numbers: $0100_{2}\left(4_{10}\right) \quad 0100_{2}\left(4_{10}\right) \quad 1100_{2}\left(-4_{10}\right)$
(two's compliment) $+\underline{0110_{2}}\left(6_{10}\right)+\underline{1010_{2}}\left(-6_{10}\right)+\underline{1010_{2}}\left(-6_{10}\right)$
2. For 4-bit unsigned numbers, when do we have overflow and get the wrong result during addition? (Hint: think about the carry bits into and/or out of the most-significant bit)
3. a) For 4-bit signed numbers, complete the following table about signed overflow:

Sign of Operands for addition		Expected Sign of Result	Wrong Sign of Result (indicates overflow)	
Operand 1	Operand 2			
+	+	These two rows cannot cause signed overflow in addition		
+	-			
-	+			
-	-			

b) For 4-bit signed numbers, when do we have overflow and get the wrong result during addition? (Hint: think about the carry bits into and/or out of the most-significant bit)
4. How would you subtract two signed, 2 's-complement numbers? Try the following:
$0110_{2}\left(6_{10}\right)$
$0011_{2}\left(+3_{10}\right)$
$1111_{2}\left(-1_{10}\right)$

- $\underline{0111_{2}}\left(7_{10}\right)$
$-\underline{1111_{2}}\left(-1_{10}\right)$
$-\underline{0011_{2}}\left(+3_{10}\right)$

Team \#:
Name:
Absent:
5. Use Booth's algorithm to calculate the 8 -bit product of $0110_{2} \times 1101_{2}$.

Multiplicand 0110

- Multiplicand

1010

"Initial Product"	"Multiplier"	"Previous bit"
0 0 0 0	1 1 0 1	0

