\qquad Name: \qquad
Absent:

IEEE 754 Standard Floating Point Representation

8-bit

	Sign bit
Exponent (bias 127)	23-bit Mantissa (for normalized values, leading 1 not stored)
$0 \equiv+\square$	
$1 \equiv-\square$	

11-bit
Sign Exponent
52-bit Mantissa

Single Precision		Double Precision		Object
Exponent	Mantissa	Exponent	Mantissa	Represented
$1-254$	any value	$1-2046$	any value	normalized \#
0	0	0	0	0
0	nonzero	0	nonzero	denormalized \#
255	0	2,047	0	infinity
255	nonzero	2,047	nonzero	NaN (not a \#)

1) Convert the value 23.625_{10} to its binary representation.

2) Normalize the above value so that the most significant 1 is immediately to the left of the radix point. Include the corresponding exponent value to indicate the motion of the radix point.

3) Write the corresponding 32-bit IEEE 754 floating point representation for 23.625_{10}.
\qquad Name: \qquad
Absent:
4) Write the corresponding 64-bit IEEE 754 floating point representation for 23.625_{10}.
5) What would be the smallest positive normalized 32-bit IEEE 754 floating point value?
6) The smallest positive denormalized 32-bit IEEE 754 floating point value has representation of 8-bit

	Sign bit	Exponent (bias 127)	23-bit Mantissa (for denormalized values, leading 0 not stored)	
$0 \equiv+$	0	00000000	$000 \ldots$	01

What value would it represent?

$$
2 \square_{\times 2} \square
$$

7) What would be the representation for the largest positive denormalized 32-bit IEEE 754 floating point?

		8-bit Exponent (bias 127)	23-bit Mantissa (for denormalized values, leading 0 not stored)
$\begin{aligned} & 0 \equiv+ \\ & 1 \equiv- \end{aligned}$	0	0000000	

8) How would you add two IEEE 754 floating point numbers?
9) How would you multiply two IEEE 754 floating point numbers?
10) Consider adding 1.011×2^{40} and 1.01×2^{5}.
a) How many places does the second number's mantissa get shifted?
b) After we add these two numbers and store the results back into a 32-bit IEEE 754 value, what would be the result?
