1) Draw the logic circuit using ANDs, ORs, and NOT gates for $\mathrm{F}=\bar{A} \bar{B} C+A \bar{B} \bar{C}+\bar{A} B C+A \bar{B} C$. What is the complexity (sum of \# inputs and \# gates)?
\qquad
Absent:

Identity Name	AND Form	OR Form
Identity Law	$1 x=x$	$0+x=x$
Null (or Dominance) Law	$0 x=0$	$1+x=1$
Idempotent Law	$x x=x$	$x+x=x$
Inverse Law	$x \bar{x}=0$	$x+\bar{x}=1$
Commutative Law	$x y=y x$	$x+y=y+x$
Associative Law	$(x y) z=x(y z)$	$(x+y)+z=x+(y+z)$
Distributive Law	$x+y z=(x+y)(x+z)$	$x(y+z)=x y+x z$
Absorption Law	$x(x+y)=x$	$x+x y=x$
DeMorgan's Law	$(\overline{x y})=\bar{x}+\bar{y}$	$(\overline{x+y})=\bar{x} \bar{y}$
Double Complement Law	$\overline{\bar{x}}=x$	

2) Using Boolean Algebra simplify $\mathrm{F}=\bar{A} \bar{B} C+A \bar{B} \bar{C}+\bar{A} B C+A \bar{B} C$.
3) Draw the simplified logic circuit using ANDs, ORs, and NOT. What is the complexity (sum of \# inputs and \# gates)?
4) Simplify the following using K-maps:
a) $F_{1}=\bar{A} \bar{B} \bar{C}+\bar{A} B+\bar{A} B C+A \bar{B} C+A \bar{B} \bar{C}$
b) $F_{2}=\bar{A} \bar{B} \bar{D}+A C \bar{D}+A B \bar{C} \bar{D}+A \bar{B} \bar{C} \bar{D}+A B C D$

Team \#:
Name: \qquad
Absent:
5) For the BCD to seven-segment display, what would the simplified SOP expression for the "c" segment? (Use "d" for don't cares)

Decimal Value	$\mathbf{x}_{\mathbf{1}}$	$\mathbf{x}_{\mathbf{2}}$	$\mathbf{x}_{\mathbf{3}}$	$\mathbf{x}_{\mathbf{4}}$	\mathbf{a}	\mathbf{b}	\mathbf{c}
0	0	0	0	0	1	1	
1	0	0	0	1	0	1	
2	0	0	1	0	1	1	
3	0	0	1	1	1	1	
4	0	1	0	0	0	1	
5	0	1	0	1	1	0	
6	0	1	1	0	1	0	
7	0	1	1	1	1	1	
8	1	0	0	0	1	1	
9	1	0	0	1	1	1	
10	1	0	1	0	d	d	
11	1	0	1	1	d	d	
12	1	1	0	0	d	d	
13	1	1	0	1	d	d	
14	1	1	1	0	d	d	
15	1	1	1	1	d	d	

6) Since there are so many 1's in function c above, consider implementing $\overline{\mathrm{c}}$ and then negating it.

