\qquad
Absent:

1. Sum the following binary (base 2) numbers

$$
\begin{array}{rr}
10011_{2} & 101101_{2} \\
+10110_{2} & +110111_{2} \\
\hline
\end{array}
$$

2. Complete the Full-Adder truth table for the sum $\left(\mathrm{s}_{\mathrm{i}}\right)$ and carry-out $\left(\mathrm{c}_{\mathrm{i}+1}\right)$ functions.

$\mathbf{x}_{\mathbf{i}}$	$\mathbf{y}_{\mathbf{i}}$	carry- $\mathbf{i n}$ $\mathbf{c}_{\mathbf{i}}$	sum $\mathbf{s}_{\mathbf{i}}$	carry-out $\mathbf{c}_{\mathbf{i}+\mathbf{1}}$
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

3. Use k-maps to minimize the sum (s_{i}) and carry-out ($\mathrm{c}_{\mathrm{i}+1}$) functions of the Full-Adder:
4. For the one-bit Full-Adder, how many gate delays are needed before the carry-out $\left(c_{i+1}\right)$ wire is correct?
5. A 32-bit, ripple-adder is made up of a collection of single-bit Full-Adders connected together as shown below:

How many gate delays are needed before c_{32} is correct?
\qquad
Absent:
6. To speed up the calculation of the carry-out $\left(\mathrm{C}_{\mathrm{i}+1}\right)$ signals, consider constructing a 32-bit adder using two-bit adders as shown in:

If c_{i+1} is calculated directly from the inputs as $c_{i+1}=x_{i} y_{i}+x_{i} x_{i-1} y_{i-1}+x_{i} x_{i-1} c_{i-1}+x_{i} y_{i-1} c_{i-1}$
$+y_{i} x_{i-1} y_{i-1}+y_{i} x_{i-1} c_{i-1}+y_{i} y_{i-1} c_{i-1}$, then how many gate delays would be needed to calculate the c_{i+1} signal in a two-bit adder?
7. What would be the total number of gate delays in a 32-bit adder before the c_{32} signal is generated correctly if two-bit adders were used?
8. What would be the total number of gate delays in a 32 -bit adder before the c_{32} signal is generated correctly if three-bit adders were used (10 three-bit adders and a 2-bit adder)?
9. What would be the total number of gate delays in a 32 -bit adder before the c_{32} signal is generated correctly if four-bit adders were used?

