Terminology:

problem - question we seek an answer for, e.g., "what is the largest item in a list/array?"

parameters - variables with unspecified values

problem instance - assignment of values to parameters, i.e., the specific input to the problem

```
myList:
    0 1 2 3 4 5 6
      5 10 2 15 20 1 11

largest: ?

n: 7
```

algorithm - step-by-step procedure for producing a solution

basic operation - fundamental operation in the algorithm (i.e., operation done the most) Generally, we want to derive a function for the number of times that the basic operation is performed related to the **problem size**.

problem size - input size. For algorithms involving lists/arrays, the problem size is the number of elements ("n").

```
import time

def main():
    aList = range(1,1000001)
    start = time.time()
    sum = sumList(aList)
    end = time.time()
    print "Time to sum the list was %.3f seconds" % (end-start)

def sumList(myList):
    """Returns the sum of all items in myList""
    total = 0
    for item in myList:
        total = total + item
    return total

main()
```

a) What is the basic operation?

b) What is the problem size?

c) What would determine how fast this algorithm would run?
Big-oh Definition - asymptotic upper bound
For a given complexity function \(f(n) \), \(O(f(n)) \) is the set of complexity functions \(g(n) \) for which there exists some positive real constant \(c \) and some nonnegative integer \(N \) such that for all \(n \geq N \),
\[
g(n) \leq c \times f(n).
\]

Problem with big-oh:
If \(T(n) \) is \(O(n) \), then it is also \(O(n^2) \), \(O(n^3) \), \(O(n^4) \), \(O(2^n) \), …. since these are also upper bounds.

Omega Definition - asymptotic lower bound
For a given complexity function \(f(n) \), \(\Omega(f(n)) \) is the set of complexity functions \(g(n) \) for which there exists some positive real constant \(c \) and some nonnegative integer \(N \) such that for all \(n \geq N \),
\[
g(n) \geq c \times f(n).
\]

"Proof": Pick \(c = 110 \) and \(N = 1 \), then \(100 + 10 n \leq 110 n \) for all \(n \geq 1 \).
\[
\begin{align*}
100 & \leq 100 n \\
1 & \leq n
\end{align*}
\]

\(T(n) = c_1 + c_2 \cdot n = 100 + 10 n \) is \(O(n) \).
2. Let \(T(n) = c_1 + c_2 n = 100 + 10 n \). Show that \(100 + 10 n \) is \(\Omega(n) \).

"Proof": We need to find a \(c \) and \(N \) so that the definition is satisfied, i.e., \(100 + 10 n \geq c n \) for all \(n \geq N \).

What \(c \) and \(N \) will work?

\[T(n) = c_1 + c_2 n = 100 + 10 n \text{ is } \Theta(n) \text{ since it is both } O(n) \text{ and } \Omega(n). \]

3. Suppose that you have an \(\Theta(n^2) \) algorithm that required 10 seconds to run on a problem size of 1000. How long would you expect the algorithm to run on a problem size of 10,000?
4. Analyze the below algorithm to determine its theta notation, $\theta()$.

```python
i = n
while i > 0:
    for j in xrange(n):
        # something of $O(1)$
    # end for
    i = i / 2
# end while
```

5.

```python
def linearSearch(target, aList):
    """Returns the index position of target in aList or -1 if target
    is not in aList""
    for position in xrange(len(aList)):
        if target == aList[position]:
            return position
    return -1
```

a) For sequential search, what is the best-case time complexity $B(n)$?

b) For sequential search, what is the worst-case time complexity $W(n)$?

c) If the probability of a successful sequential search is p, then what is the probability on an unsuccessful search?

d) If the probability of a successful sequential search is p, then what is the probability of finding the target value at a specific index in the array?

e) For each position in the list of size n, how many comparisons would be needed for a successful search?

```
0 1 2 3 . . . n-1
```

compares:

probability:

e) Write a summation for the average number of comparisons.

f) What is the average time complexity, $A(n)$?