Data Structures - Test 2

Question 1. A Deque (pronounced “Deck”) ADT is like a queue, but it allows adding or removing items from either the front or the rear of the Deque. Abstractly, the Deque behaves as:

\[
\begin{array}{c|c|c|c}
| \text{Front} & \text{Rear} | \\
\hline
\text{addFront} & \text{addRear} | \\
\text{removeFront} & \text{removeRear} |
\end{array}
\]

Consider the following Deque implementation which uses a Python list representation.

```python
class Deque:
    def __init__(self):
        self.items = []
    def isEmpty(self):
        return self.items == []
    def addRear(self, item):
        self.items.append(item)
    def addFront(self, item):
        self.items.insert(0, item)
    def removeRear(self):
        return self.items.pop()
    def removeFront(self):
        return self.items.pop(0)
    def __len__(self):
        return len(self.items)
```

a) (10 points) Complete the worst-case big-oh notation for each Deque operation assuming the above implementation. Let \(n \) be the number of items in the Deque.

<table>
<thead>
<tr>
<th>Operation</th>
<th>Big-Oh</th>
</tr>
</thead>
<tbody>
<tr>
<td>isEmpty</td>
<td>(O(1))</td>
</tr>
<tr>
<td>addFront</td>
<td>(O(n))</td>
</tr>
<tr>
<td>addRear</td>
<td>(O(1))</td>
</tr>
<tr>
<td>removeFront</td>
<td>(O(n))</td>
</tr>
<tr>
<td>removeRear</td>
<td>(O(1))</td>
</tr>
<tr>
<td>len</td>
<td>(O(1))</td>
</tr>
</tbody>
</table>

b) (8 points) Instead of the above list representation of a Deque, explain how an Array (the textbook Array class) can be used to improve performance of the Deque.
Question 2. An alternative implementation of a Deque would be a linked implementation as in:

![Deque Object Diagram]

Node Class Objects

_a) (6 points) Complete the worst-case big-oh notation for each Deque operation assuming the above implementation. Let n be the number of items in the Deque.

<table>
<thead>
<tr>
<th>Operation</th>
<th>Worst-Case Big-Oh</th>
</tr>
</thead>
<tbody>
<tr>
<td>isEmpty</td>
<td>O(1)</td>
</tr>
<tr>
<td>addFront</td>
<td>O(1)</td>
</tr>
<tr>
<td>addRear</td>
<td>O(1)</td>
</tr>
<tr>
<td>removeFront</td>
<td>O(n)</td>
</tr>
<tr>
<td>removeRear</td>
<td>O(n)</td>
</tr>
<tr>
<td>len</td>
<td>O(1)</td>
</tr>
</tbody>
</table>

b) (9 points) Provide a sentence or two of justification for your answers in part (a) for each of the following operations:

removeFront:

removeRear

c) (20 points) Complete the addFront and removeFront methods of the linked Deque implementation:

```python
from node import Node   # Has constructor method: Node(myData, myNext)
# Has public data attributes: data and next
class Deque:
    def __init__(self):
        self._front = None
        self._rear = None
        self._size = 0

    def addFront(self, item):
        node = Node(item, self._front)
        self._front = node
        if self._size == 0:
            self._rear = node
        self._size += 1

    def removeFront(self):
        if self._front is None:
            raise EmptyQueueError
        item = self._front.data
        self._front = self._front.next
        if self._front is None:
            self._rear = None
        self._size -= 1
```

```python
def removeRear(self):
    if self._rear is None:
        raise EmptyQueueError
    item = self._rear.data
    self._rear = self._rear.next
    if self._rear is None:
        self._front = None
    self._size -= 1
```
d) (7 points) Suggest a recommendation for improving the linked implementation of the Deque.

Question 3. Consider the following heap with array indexes indicated in []'s.

a) (4 points) For a node at index \(i \), what is the index of:
 - its left child if it exists:
 - its parent if it exists:

b) (10 points) What would the above heap look like after adding 18, and then popping (dequeuing) an item?

c) (6 points) Explain why adding a new item to a heap has a worst-case big-oh of \(O(\log_2 n) \), where \(n \) is the number of items in the heap
Question 4. Consider implementing a sorted list ADT that includes the following operations:
 • indexed-based operations: [] as an accessor and remove (e.g., print myList[i] and myList.remove(i))
 • content-based operations: insert and index (e.g., myList.insert(item) and i = myList.index(item))

a) (5 points) If the underlying representation is an Array sorted by item values, then complete the worst-case big-oh notation for each sorted list operation. Assume that a binary search is used to find an item. Let n be the number of items in the sorted list.

<table>
<thead>
<tr>
<th>myList[i]</th>
<th>myList.remove(i)</th>
<th>myList.insert(item)</th>
<th>i = myList.index(item)</th>
</tr>
</thead>
</table>

b) (5 points) If the underlying representation is a doubly-linked list sorted by item values, then complete the worst-case big-oh notation for each sorted list operation. Let n be the number of items in the sorted list.

<table>
<thead>
<tr>
<th>myList[i]</th>
<th>myList.remove(i)</th>
<th>myList.insert(item)</th>
<th>i = myList.index(item)</th>
</tr>
</thead>
</table>

Question 5. Recall that merge sort is a recursive divide-and-conquer algorithm such that:

Initial unsorted list of size n

Divide - splits list/array into two equal parts

unsorted list of size n/2
unsorted list of size n/2

Conquer - recursively merge sort each half

sorted list of size n/2
sorted list of size n/2

Combine - merge the sorted halves back together

sorted list of size n

a) (5 points) When merging two sorted lists of size n/2 each, what is the worst-case number of comparisons that must be performed? (justify your answer for partial credit)

b) (5 points) What maximum depth of recursion does the merge sort algorithm require when sorting a list of size n? (justify your answer for partial credit)