Tacles @\p@%g

e i ——

fiéﬁﬁzsm sz@%}f :
- PI\C, (C 504«4»@,

LO Cﬁ’ﬁb A

N v i4aftin / Overt s
— L <

~,
o ‘D@CO/;;I;’;L/D&K <

\\

o nd = O
s Cg:ﬁd = ()

OV‘%M =

)
!9((;)Cf%(;g e = = e»zl :
two ™= o (at +/

L g!‘ y ﬂy%&%ﬁ’\@ e 3 A

"

“f’Al ree (A e |

L@‘%(S ()52 d c@aﬂi% %’;”%w@“fwe 10 Z’l é)[{/ My /47),}[&

Lovrts, 'ﬁ?(ff’@m«{” é/&mw) “{"S’ I Iy, A I@?)

Media Computation Lecture 39 Name:

As our programs get bigger it becomes important to design them first, so let’s consider Chapter 9 Building Bigger
Programs. Top-down design (hierarchical decomposition) starts with developing a list of high-level requirements
and high-level tasks. The high-level tasks are refined into smaller, but more specific subtasks. These subtasks might
need to be further refined into even more detailed sub-subtasks, etc. The goal is to keep refining until all subtasks
are easily implemented as a simple function with a “few” programming statements (I like to use the rule of thumb of
~25 lines containing a single loop).

You also need to decide how your data is represented (variables, lists, dictionaries) and passed between the subtasks.
I find it helpful to think about how I would solve the same problem “by hand” and model that behavior,

1. Consider the problem: S - .
“Write a program to roll two 6-dided dice(1,000 tipnes to determine the percentage of each outcome (i.e., sum of

both dice). Report the outcortie(s) with the Highest percentage.”

a) Describe how you would solve this problem by hand -- including what values you would need to keep track of.

W 2 Y 4 é e Ao |k

Lj\((p@»g (\-m T

"L

Most simple programs have a similar h1e1atcl};(:ﬁl c|1$comp031t10n design pattern:
or U -j’ [AYEIAR)

die glﬁ@f 1f""‘”1€

Tesults paramg

Aresults
params.

input
parars}

Initialization Display results

- welcome user Calculate
- initialize variables - compute answer
- prompt for input

subtask 1 subtask 2

b) Customize the diagram for the dice problem by briefly describing what each function does and what parameters
are passed.

see Prge

Lecture 39 Page 1

Media Computation Lecture 39 Name:
My hierarchical-decomposition of this problem is:

. Number
P main mOStFrequfeI}ltR dIeSIdeS

pumberOfRolls, dieSides doside A highestCoynt Sy,
1e»ICs
mostFrequeniRolls)
displayWelcomeAndInpuiRolls ~ numberOfRolls hlghestC%unt displayResults

_calculateFrequentRolls

rollAndTallyOutcomes G

main - provides an outline of program by calling top-level functions
displayWelcomeAndInputRolls - Displays welcome message for the user. Gets and returns the number of

dice rolls and number of sides on each die from the user.

calculateFrequentRolls - Rolls the dice the correct number of times, tallies the outcomes, and returns a list
of outcomes with the highest count and highest count. _
rollAndTallyOutcomes - Rolls the dice the correct number of times and tallies the outcomes. Returns a list of
tallies with the index being the outcome,

max - built-in function to refurn the largest item in an iterable data siructure like a list,
findFreguentOutcomes - Retumns a list of outcomes with the highest count.

displayResults - Displays the ouicome(s) with the highest percentage.

Consider running the program with only 10 dice rolls instead of 1,000, The program output with some extra
debugging prints showing the two Python lists used: outcomeCounts and mostFrequentRolls.

This programs rolls two 6-sided dice 10 times to
determine the outcome(s) w1t t e highest ercent

@ 4
outcomeCounts: [0, 0, 1, 0 2, 1, G, 3, 0, 0O, 3, 0 0]
mostFrequentRolls: {7, 10] and highestCount: 3
The highest percentage is 30.0% for outcome({s}: 7 10

Implementation and testing can proceed from the boffom-up (i.e., simplest subtasks first) and integrated together.

¢) Complete the rol1AndTallyOutcomes function using from random import randint

The randint function call to generate a random value between 5 and 10 wpuld be: value (4 _randint {5, 10}
0 [’?}? fbyr() s .f(:)
def rollAndTallyOutcomes {numberOfRolls, d1e81des, outcomeCouhts

_Pup ro LS N Vangt ()’]U&iép/ 'F f)
outcome = V’\a/\ﬁ”‘\l‘““ GE esfﬁ@ f) t V\Z“J'\ﬂ%a’[ﬂ(\@ Qﬂer) |
@9’% lowie (igéfﬁ'# §£(9U+Qm1€j - l | {

d) [3)

def findFrequentOutc mes(hlgheg‘cCount outcomeCounts) :

H’\Oﬂff“éc@kéﬂ% e =T

‘Po/‘ i/\ﬂ(fy‘ in f‘&ﬂﬂ)@, (IQ/\(O(A(@;%&(@UA%{))
'P OU'\L@Né@ TS C,J/l OO:—:“ e 49(}«(0{/&1‘{“‘ '

Mo ¢+ F"v@f?&"@ﬂ t ﬁ t(f Wpen ﬁ (l)’Lﬁe K‘) Lecture 39 Page 2
V“e:"{“cf mn Mosk riw%m LA R,

