C/C++ Programming

Lecture 25 Name:

1. An Abstract Data Type (ADT) is a programmer defined data type that specifies: (1) values that can be stored,
and (2) operations that can be done on the values. The user of an abstract data type does not need to know the
implementation of the data type, e.g., how the data is stored or how its operations are performed. C++ classes
define the blueprints for ADTs, and we can construct as many instances of the class, called objects. For example,
in addition to C-style (null terminated character arrays), C++ has a string class. You can define a string object
by calling any constructor for a string.

Definition

Meaning

string name;

defines an empty string object

string myname ("Chris"); defines a string and initializes it

string yourname (myname) ; defines a string and initializes it

string aname (myname, 3); defines a string and initializes it with first 3
characters of myname

string verb (myname, 3, 2); defines a string and initializes it with 2
characters from myname starting at position
3

string noname('A', 5); defines string and initializes itto 5 'A's

Unlike traditional c-strings, which are mere sequences of characters in a memory array, C++ string objects belong
to a class with many built-in features to operate with strings in a more intuitive.

OPERATOR MEANING

>> extracts characters from stream up to whitespace, insert
into string

<< inserts string into stream

= assigns string on right to string object on left

+= appends string on right to end of contents on left

+ concatenates two strings

[] references character in string using array notation

>, >=, <, relational operators for string comparison. Return true or

<=, ==, != false

Details about the following member functions can be found at:

http://www.cplusplus.com/reference/string/string/

Capacity Related Member Functions
size or length zgﬁi < 233;25 i;i;t(})l'(. Return length of string
max_size cout << myStr.max_size(); Return maximum # character any string can hold
resize myStr.resize(15); Resize string. Truncate‘ t.he string if is shrinking in size,
myStr.resize(50,"*"); or paddle with the specified character (default \0").
capacity cout << myStr.capacity(); Return size of allocated storage
reserve myStr.reserve(15); Request a change in capacity to at least specified size
clear myStr.clear(); Clear string so that it is empty
empty if (myStr.empty()) { Test if string is empty

Lecture 25 Page 1

C/C++ Programming Lecture 25

Name:

String Modifier Member Functions

append myStr.append(anotherStr); Append to string

push_back | myStr.push_back(‘*"); Append character to string

insert myStr.insert(5, anotherStr); Insert into string at a specific location

erase myStr.erase(startPos, len); Erase len characters from string at specific startPos
replace myStr.replace(startPos, len, anotherStr) | Replace part of string by some other specific content
copy myStr.copy(charArray, startPos, len); Copy sequence of characters from string to char array
swap myStr.swap(anotherStr); Swap contents with another string

String operations

c_str myCStr = myStr.c_str(); Returns pointer to C string equivalent

data myCharArray = myStr.data(); Returns pointer to char array containing
myStr

find foundPos=myStr.find(otherStr,startPos) | Returns position of first occurrence of a
string (c-string, or char) on or after startPos

rfind foundPos=myStr.rfind(otherStr, startpPos) Returns position of last occurrence of a

string (c-string, or char) on or after startPos

find_first_not_of

pos=myStr.find_first_not_of (“aeiou”,
startPos)

Returns position of first char NOT in the
specific string (c-string, or char) on or after
startPos

substr

otherString = substr (startPos, len);

Returns a string of len characters starting at
startPos

Suppose we want to read a line of text containing tab separated data and split it up into an array of substrings:

// Demo of C++ string class usage
#include <iostream>

#include <string>

using namespace std;

const int SIZE

// prototypes

void splitLineByCharacter (string myLine,

int main() {

100;

int & substringCount);

int substringCount, index;
string myLine;
string substrings[SIZE];

"

cout << "Enter your <Tab> separated data: ";

getline(cin,

myLine) ;
cout << "You entered address

"

<< myLine << endl;

char delimiter,

string substrings|[],

// reads a whole line of text including whitespace characters

splitLineByCharacter (myLine, '\t', substrings, substringCount);

cout << "There are

for (index =

"

<< substringCount
<< " <Tab> delimited strings.

0; index < substringCount; index++) {

cout << substrings[index] << endl;

} // end for

} // end main

The strings are:" << endl;

a) Which string member functions would be useful in writing the splitLineByCharacter function?

Lecture 25 Page 2

C/C++ Programming

b) Write the code to implement the splitLineByCharacter function.

void splitLineByCharacter (string myLine,

Lecture 25

char delimiter,

Name:

string substrings|[],

int & substringCount) {

2. A structure is a C (and C++) construct that allows multiple variables of potentially different types to be grouped

together. The general format for defining a structure is:
struct <structName>

{

typel fieldl;
type2 field2;

}; // NOTE the ‘;’ after the definition

For example, we can define the template for a Student structure as:

struct Student {
int studentID;
string name;
short yearInSchool;
double gpa;

}; // end Student struct

Like the recipe for a cake, we don’t actually have any Student structures until we define variables by using the
structure-name Student as a type name:

Student bill = {123456,
Student sally,

bill:

studentID [|

yearInSchool :l

gpa]

“Bill”, 3, 3.10};

myClass[50];

sally: myClass: 0 1
studenc1d [] student1d [] | studemcin []
B name[] | name
yearInSchoollZl yearInSchool :l
gpal |
gpal] gpal]

Lecture 25 Page 3

C/C++ Programming Lecture 25 Name:

The dot (.) operator is used to refer to members of struct variables:
cin >> sally.studentID;
getline(cin, sally.name);
sally.yearInSchool = 2;
sally.gpa = 3.75;
myClass[0].gpa =4.0

a) Write code to display the information about student variable bill.

b) Unlike arrays, a structure variable definition does NOT create a pointer to a chunk of memory. Thus, if you
write a get Student function to interactively read information about a student, you have several options on
returning the Student information back to the main:

* use a pass-by-reference Student parameter

e return the Student as the return type with the call from the main looking like:
Student myStudent;
myStudent = getStudent();

* pass a pointer to a Student structure to the the function

Write this get Student function that returns a St udent as the return type.

¢) A third approach would be to pass a pointer to a Student structure to the the function as:

Student * newStudentPtr;
newStudentPtr = new Student; // dynamically allocate a Student record
getStudent (newStudentPtr) ; // call by sending the pointer newStudentPtr

In the get Student function definition, show how would you read a value for the student ID member?

void getStudent (Student * myStudentPtr) {
cout << "Enter Student's ID: ";
cin >>

Lecture 25 Page 4

C/C++ Programming Lecture 25 Name:

d) Alternatively, if you have a pointer to a structure as in the previous get Student function, you can use the
“follow the pointer operator” —> as shown below. How would you read a value for the name member?

void getStudent (Student * myStudentPtr) {
cout << "Enter Student's ID: ";
cin >> myStudentPtr->studentID;

cout << "Enter Student's name: ";
cin >>

}
3. An enumerated type in C++ is a data type whose legal values are a set of named constant integers. An example

would be:
enum Day { SUNDAY, MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY };

A variable of type Day can only be assigned one of these constant values.

int myInt, weekDay;
Day today, tomorrow;

today = MONDAY;

In C++ enumerated types are inplemented using integer. In the type Day, Sunday is a named constant integer with
the value 0, Monday is a named constant integer with the value 1, etc.
a) The assignment statements:

today = MONDAY;

myInt = today; // myInt gets the integer value 1
are both legal, but

myInt = 1;

today = myInt;
causes an error. Why?

b) Explain the output of the following code.

#include <iostream>
using namespace std;

enum Day { SUNDAY, MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY };

int main() {
int myInt, weekDay;
double totalHours, hoursWorked[] = { 10, 5, 5, 9, 8, 9, 12 };
Day today;
today = MONDAY; !
today's value: 1
cout << "today's value: " << today << endl; mylnz's value: 1
today = MONDAY; today's value: 2
myInt = today; // myInt gets the integer value 1 Week Day total hours: 36
cout << "myInt's value: " << myInt << endl; Week-FEnd total hours: 22
myInt = 1;

//today = myInt; CAUSES AN ERROR
today = static_cast<Day> (myInt+1);
cout << "today's value: " << today << endl;

totalHours = 0;

for (weekDay MONDAY; weekDay <= FRIDAY; weekDay++) {

totalHours = totalHours + hoursWorked[weekDay];
} // end for
cout << "Week Day total hours: " << totalHours << endl;
cout << "Week-End total hours: " << hoursWorked [SATURDAY]+hoursWorked [SUNDAY] <<endl;

} // end main

Lecture 25 Page 5

C/C++ Programming Lecture 25 Name:

C++ classes define the blueprints for ADTs, and we can construct as many instances of the class, called objects.

For example, C++ has a string class.

a) If you download the receipe for a cake from the Internet, how many cakes do you have?

b) How many cakes can you make from this receipe?

¢) In object-oriented languages like C++, programmers define classes (‘“the receipes”) and can make (construct) as
many objects (class instances) as needed. Consider the following main program that uses a simple Die class. How

many Die objects are used in this program?

/* File: TestDieMain.cpp to test the Die class */
#include "Die.h"

#include <iostream>

using namespace std;

int main() |
Die diel = Die(); // 6-sided die \ R \ R
Die die2 = Die(8); // 8-sided die diel: 5 die2:
++diel 6
cout << "diel: " << diel.getRoll() << " die2: " Rolls two dice 10 times:
<< die2 << endl; 35
++diel; 51
cout << "++diel " << diel << endl; 31
2 5
cout << "Rolls two dice 10 times: " << endl; 1 1 dice are equal
for (int count=0; count < 10; count++) { 3 7
diel.roll(); .
die2.roll () i g dice are equal
cout << diel << " " << die2; ,
if (diel == die2) { 1 1 dice are equal
cout << " dice are equal"; 3 4
} // end if

cout << endl;
} // end for
} // end main

/‘k*‘k************************* Die h R R b i b b I b b b b 2 b b I 2 b b b b b b I b b b 2 b b 4

* Declaration of Die class
‘k‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k*‘k***‘k*‘k*‘k**************************/

#ifndef DIE_H
#define DIE_H
#include <iostream>
#include <iomanip>
using namespace std;

class Die {
// These needed to be implemented as non-member functions since the left
// operand is not a Die object. We make them friend functions to allow
// access to the private data members.
friend ostream & operator<<(ostream &, const Die &);
friend istream & operator>>(istream &, Die &);

private:
int numberOfSides;
int currentRoll;

public:
Die(int sides = 6); // default constructor with default sides of 6
void roll(); // rolls the die
int getRoll() const; // returns the value of the current roll
bool operator==(const Die &) const;

Die & operator++();

}; // end Die class

#endif

Lecture 25 Page 6

C/C++ Programming Lecture 25 Name:

/**************************** Dle cpp kA Ak Ak kA hkkh Ak khrAhkkhkhArhkkhkrhkhkrxkhk*x*x*

* Implementation of die class
**/
#include "Die.h"

#include <cstdlib>

#include <ctime>

#include <cassert>

#include <iostream>

using namespace std;

// constructs a die with the specified number of sides
Die::Die(int sides) { //
assert (sides >= 1);

srand(time (NULL)); // initialize the random number generator
numberOfSides = sides;
currentRoll = rand() % sides + 1;

} // end Die constructor

void Die::roll() { // rolls the die
currentRoll = rand() % numberOfSides + 1;
} // end roll

int Die::getRoll() const { // returns the value of the current roll
return currentRoll;
} // end getRoll

bool Die::operator==(const Die & RHSDie) const{
return (this—->currentRoll == RHSDie.currentRoll);

} // end operator==

Die & Die::operator++() {
if (currentRoll < numberOfSides) {
currentRoll = currentRoll + 1;

} // end if
return *this;

} // end operator++

ostream & operator<<(ostream & output, const Die & die) {
output << die.currentRoll;
return output; // enables "cout << a << b << ¢;"

} // end operator<<

istream & operator>>(istream & input, Die & die) {
input >> die.currentRoll;
input >> die.numberOfSides;
assert (die.currentRoll >= 1 && die.currentRoll <= die.numberOfSides) ;
return input;
} // end operator>>

Lecture 25 Page 7

