
Implementation of Large Memory Chips

Consider a 4M x 4-bit chip which has a 22-bit addresses since 4M = 222.

Logically/Externally, we view a 4M x 4-bit memory as pictured below with:
� each memory word made up of four bits: b3 b2 b1 b0

b b b b2 1 03Address
Decimal

0
1
2
3

2 - 1
22

.

.

.

When we want to read a word, we supply a 22-bit address, and receive the corresponding 4-bit
word.

The register-file implementation (see handout), does not scale well for large memories for
several reasons:
� the number of gates in the address decoder (and MUXs) grows exponentially with the number

of bits in the address.
� lots of wires into/out of the memory chip for address, data, and control

These problems are solved by
� using square-array of bits and decoding the address in two parts (row then column number)
� eliminate MUX's by using tri-state buffers
� single-port RAM memory - data wires shared for reading and writing

Square Memory - 1

To help us see how the 4M x 4-bit memory gets mapped to the 2048 x 2048 x 4 memory array on
the next page consider splitting memory into 2048 word blocks as shown below.

b b b b2 1 03Address
Decimal

0
1
2
3

2 - 1
22

.

.

.

.

.

.

.

.

.

Binary Address

00000000000
00000000000
00000000000

00000000000
00000000001

00000000001

00000000001

00000000001

00000000010

00000000010

00000000010

00000000010

00000000000 00000000011

00000000011

00000000011

00000000011

00000000000 11111111111

11111111111

11111111111

00000000001
00000000001
00000000001

00000000001

00000000001

00000000000

00000000000

2047
2048

R
ow

 0

R
ow

 0

R
ow

 0

R
ow

 0

2049

R
ow

 1

R
ow

 1

R
ow

 1

R
ow

 1

00000000010
00000000010
00000000010
00000000010

00000000010

4095
4096
4097
4098
4099

R
ow

 2

R
ow

 2

R
ow

 2

R
ow

 2

R
ow

 2
04

7

R
ow

 2
04

7

R
ow

 2
04

7

R
ow

 2
04

7

00000000011 00000000000

11111111111
11111111111
11111111111
11111111111

00000000000

11111111111 11111111111

 Row # Location in Row

Square Memory - 2

Each bit of a word is split into a separate 2048 x 2048 square memory “array”. Each of these
square memory arrays is 2048 x 2048 = 211 x 211 = 222 = 4M bits.
The 22-bit address of the 4M memory is split into two 11-bit parts. The upper 11-bits is first
used to activate the correct row within the square memory arrays. Of the 2048-bit row that is
read from each memory array, we are interested in only one bit. The lower 11-bits of the address
specifies the location of the desired bit within the 2048-bit row.

11
-t

o-
20

48
 D

ec
od

er
11

-t
o-

20
48

 D
ec

od
er

0
1

2047

2047

Row 0 Row 0
Row 1 Row 1

 Row 2047 Row 2047

Bit b Bit b Bit b Bit b 3 2 1 0

Sense Amplifier Sense Amplifier
 and I/O Gate and I/O Gate

.

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

 Data DIB DIB Data
Input Input
Buffer Buffer

 Data DOB DOB Data
Output Output
 Buffer Buffer

D DDD 3 0 1 2

22-bit Address

11-bit Row # 11-bit Column #

11

11

2048 x 2048 2048 x 2048

0
1

 Amp & Amp &
I/O Gate I/O Gate

Note: This is a tri-state (three-state) buffer. It acts as
a switch. When the "Control" is a
1, the "In" signal is passed to the
the "Out" wire. When the "Control"
is a 0, the "In" is disconnected
from the "Out" wire.

In

Control

Out

Square Memory - 3

Implementing Large Memory with Smaller Chips

Consider for example, implementing 4M x 32 bits memory with 256KB x 1 bit chips.
The 256KB x 1 chips are implemented as square arrays of 512 x 512.

We will use an two-dimensional array of the 256KB x 1 chips to implement the larger memory.

The number of chips per row would be 32 bits / 1 bit = 32 chips.
The number of chips per column would be 4M / 256K = 222 / 218 = 24 = 16 chips per column.

The 22-bit address of the 4M x 32 bit memory would be split up as follows:

22-bit Address

4 bits
 chip
 row

18 bits

9 bits 9 bits

row #
within chip

column #
within chip

 4-to-16
 Decoder

0
1

15

512 x 512

512 x 512

512 x 512

512 x 512

512 x 512

512 x 512

512 x 512

512 x 512

512 x 512

 chip

 chip

 chip

 chip

 chip

 chip

 chip

 chip

 chip

CS

CS

CS

CS

CS

CS

CS

CS

CS

. . .

. . .

. . .

. . .

 9

4

Row 15

Row 0

Row 1

of Chips

of Chips

of Chips

Out

Out

Out

b b b 31 30 0

32 chips in a row

"CS" means
Chip Select

(time-multiplexed)

Square Memory - 4

