
Implementation of Large Memory Chips

Consider a 4M x 4-bit chip which has a 22-bit addresses since 4M = 222.

Logically/Externally, we view a 4M x 4-bit memory as pictured below with:
� each memory word made up of four bits:  b3 b2 b1 b0
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When we want to read a word, we supply a 22-bit address, and receive the corresponding 4-bit
word.

The register-file implementation (see handout), does not scale well for large memories for
several reasons:
� the number of gates in the address decoder (and MUXs) grows exponentially with the number

of bits in the address.
� lots of wires into/out of the memory chip for address, data, and control

These problems are solved by 
� using square-array of bits and decoding the address in two parts (row then column number)
� eliminate MUX's by using tri-state buffers
� single-port RAM memory - data wires shared for reading and writing

Square Memory - 1



To help us see how the 4M x 4-bit memory gets mapped to the 2048 x 2048 x 4 memory array on
the next page consider splitting memory into 2048 word blocks as shown below.
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Each bit of a word is split into a separate 2048 x 2048 square memory “array”.  Each of these
square memory arrays is 2048 x 2048 = 211 x 211 = 222 = 4M bits.
The 22-bit address of the 4M memory is split into two 11-bit parts.  The upper 11-bits is first
used to activate the correct row within the square memory arrays.  Of the 2048-bit row that is
read from each memory array, we are interested in only one bit.  The lower 11-bits of the address
specifies the location of the desired bit within the 2048-bit row.   
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Note:  This is a tri-state (three-state) buffer.  It acts as
a switch.  When the "Control" is a
1, the "In" signal is passed to the 
the "Out" wire.  When the "Control"
is a 0, the "In" is disconnected
from the "Out" wire.
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Implementing Large Memory with Smaller Chips

Consider for example, implementing 4M x 32 bits memory with 256KB x 1 bit chips.  
The 256KB x 1 chips are implemented as square arrays of 512 x 512.

We will use an two-dimensional array of the 256KB x 1 chips to implement the larger memory.

The number of chips per row would be 32 bits / 1 bit = 32 chips.
The number of chips per column would be 4M / 256K = 222 / 218 = 24 = 16 chips per column.

The 22-bit address of the 4M x 32 bit memory would be split up as follows:
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