Lecture 5

15 SI

31 US

ASCII Character Representation																				
0	NUL		16	DLE		32		4	8	0	64	@	8	0	Р	96	i.	`	112	р
1	SOH		17	DC1		33	1	4	9	1	65	А	8	1	Q	97		а	113	q
2	STX		18	DC2		34	"	5	0	2	66	В	8	2	R	98		b	114	r
3	ETX		19	DC3		35	#	5	1	3	67	С	8	3	S	99		С	115	s
4	EOT		20	DC4		36	\$	5	2	4	68	D	8	4	т	10	0	d	116	t
5	ENQ		21	NAK		37	%	5	3	5	69	Е	8	5	U	10	1	е	117	u
6	ACK		22	SYN		38	&	5	4	6	70	F	8	6	V	10	2	f	118	v
7	BEL		23	ETB		39	1	5	5	7	71	G	8	7	W	10	3	g	119	w
8	BS		24	CAN		40	(5	6	8	72	н	8	8	Х	10	4	h	120	х
9	HT		25	EM		41)	5	7	9	73	1	8	9	Y	10	5	i –	121	у
10	LF		26	SUB		42	*	5	8	:	74	J	9	0	Z	10	6	j	122	z
11	VT		27	ESC		43	+	5	9	;	75	К	9	1	[10	7	k	123	{
12	FF		28	FS		44	,	6	0	<	76	L	9	2	١	10	8	1	124	1
13	CR		29	GS		45	-	6	1	=	77	М	9	3]	10	9	m	125	}
14	SO		30	RS		46		6	2	>	78	Ν	9	4	^	11	0	n	126	~

A COTT OL tati -+ D

Abbreviations

79 O

95 _

111 o

127 DEL

63 ?

47 /

NUL	Null	DLE	Data link escape
SOH	Start of heading	DC1	Device control 1
STX	Start of text	DC2	Device control 2
ETX	End of text	DC3	Device control 3
EOT	End of transmission	DC4	Device control 4
ENQ	Enquiry	NAK	Negative acknowledge
ACK	Acknowledge	SYN	Synchronous idle
ACK	Acknowledge	ETB	End of transmission block
BEL	Bell (peeb)	CAN	Cancel
BS	Backspace	EM	End of medium
ΗT	Horizontal tab	SUB	Substitute
LF	Line feed, new line	ESC	Escane
VT	Vertical tab	EOU	Elic concreter
FF	Form feed new page	FO	
	r onn reed, new page	GS	Group separator
CR	Carriage return	RS	Record separator
SO	Shift out	US	Unit separator
SI	Shift in	DEL	Delete/Idle

1) The ASCII code for character 'A' is 65_{10} , 'B' is 66_{10} , ... and 'a' is 97_{10} , 'b' is 98_{10} ,

a) What would be the 7-bit binary value used to represent 'A'?

b) What would be the 7-bit binary value used to represent 'a'?

c) How does an upper-case letter differ from its corresponding lower-case letter?

d) *Even parity* prepends a 0 or 1 so as to make the total number of 1's be even. What is the 8-bit ASCII value for" 'A':

'a':

e) What error(s) cannot be detected by even parity?

2 a) For the 8-bit data 01001011 ₂ develop the framming codeword for one-bit error detection and correction.												
12	11	10	9	8	7	6	5	4	3	2	1	
D ₇	D_6	D ₅	D_4	P ₈	D ₃	D_2	D ₁	P ₄	D_0	P ₂	P ₁	
0	1	0	0		1	0	1		1			
4+8	1+2+8	2+8	1+8	8	1+2+4	2+4	1+4	4	1+2	2	1	

2 a) For the 8-bit data 01001011₂ develop the Hamming codeword for one-bit error detection and correction:

Check bit P_1 looks at bit positions 1, 3, 5, 7, 9, and 11 Check bit P_2 looks at bit positions 2, 3, 6, 7, 10, and 11 Check bit P_4 looks at bit positions 4, 5, 6, 7, and 12 Check bit P_8 looks at bit positions 8, 9, 10, 11, and 12

b) If bit D_5 gets flipped (an error), then how would we be able to detect an error?

c) If bit D_5 gets flipped (an error), then how would we be able to know which bit to correct?

<u>u) 101 u</u>) Tor the 8-bit data 110010012 develop the framming codeword for one-bit error detection and correction.											
12	11	10	9	8	7	6	5	4	3	2	1	
D ₇	D_6	D ₅	D_4	P ₈	D ₃	D_2	D ₁	P ₄	D_0	P ₂	P ₁	
1	1	0	0		1	0	0		1			
4+8	1+2+8	2+8	1+8	8	1+2+4	2+4	1+4	4	1+2	2	1	

d) For the 8-bit data 11001001₂ develop the Hamming codeword for one-bit error detection and correction: