
Computer Organization Test 2

True                   Falsef.  One high-level language (e.g., Ada, C++, Java, etc.) instruction generally

translates to one machine language instruction.

True                   Falsee.  One assembly language instruction generally translates to one machine

     language instruction.

True                   Falsed.  The AC, MAR, MBR, PC, and IR registers in MARIE can be used to hold   

     arbitrary data.

True                   Falsec.  A two-pass assembler generally creates a symbol table during the first

     pass and finishes the complete translation from assembly language to  

     machine language on the second pass.

True                   Falseb.  Registers are storage locations within the CPU itself.

True                   Falsea.  A jump instruction changes the flow of execution by changing the AC.

Circle the correct answerQuestion 1.  (10 points)  Select the best answer to the following  true-or-false

questions:

Question 2.  (20 points)   Translate the following high-level language code segment to MARIE assembly

language.  Use the variable labels indicated in the code.

INPUT  X

WHILE X < 0 DO

     SUM = SUM + X

     INPUT  X

END WHILE

Spring 2009                                                                                                      Name: ______________________

1



Question 3.  

a)  (5 points)  For the below MARIE program, what would the symbol table be?

b)  (10 points)  Translate the given MARIE assembly language into machine language.

Address Label   Assembly Language Machine Language (in hex)

10016 LOAD   X

10116 IF, SKIPCOND  800

10216 JUMP  ELSE

10316 STORE  Y

10416 JUMP  END_IF

10516 ELSE, ADD  Y

10616 SUBT  ONE

10716 STORE Y

10816  END_IF, HALT

10916 X, DEC 10   

10A16 Y, DEC  0

10B16 ONE, DEC  1

c)  (10 points)  Translate the above MARIE assembly language into high-level language “pseudo” code.

Spring 2009                                                                                                      Name: ______________________

2



Question 4.  (10 points) Which control signals should contain a “1” for each steps in the JUMPI instruction?

T7

T6PC bMBR

T5MBR bM[MAR]Execute

T4MAR b IR[11-0]Get operand

T3PC b PC + 1Decode IR[15-12]

T2IR bMBR

T1MBR bM[MAR]

T0MAR b PCFetch

Load

ALT

Mem

Write

Mem

Read

Incr

PC
CrP0P1P2P3P4P5Step #RTNStep

Question 5.  (10 points) Draw the partial combinational logic of the hardwired control unit to handle the JUMPI

(opcode C16) instruction.

Clock 

3-bit

synchronous

counter

Cr   

3   

3-to-8 Decoder

T T T T T T T T0    1     2    3 4     6     5       7       

IR, Instruction Register

15     12

4

4-to-16 Decoder

.  .  .
 0   1   2   3   4                  12 13 14 15

Incr. PC

Mem Write

Load ALT

Mem Read

C

P

P

P

P

P

P

0     

r     

1     

2     

3     

4     

5     

Spring 2009                                                                                                      Name: ______________________

3



Question 6.  Recall that the microprogrammed version of MARIE executes a fixed microprogam to perform the

fetch-decode-execute cycle.  The instruction format for the microinstructions could look like:

MicroOp1 encodes the type of register transfer notation (RTN) to perform (see Table 4.8 below)

MicroOp2 contains the binary codes for each instruction to allow comparison to the IR opcode (IR[15-12]).

Jump is a single bit indicating that the value in the Dest field is a valid micro-address and should be placed in the

microsequencer; if Jump is “FALSE” (0), then increment to the next microinstruction.

Table 4.8.  Microoperation Codes and Corresponding MARIE RTN (p. 221)

NOTE TO CURRENT

STUDENT’S:  This table is used in

edition 2 of the textbook.  We are

using edition 3 so our table is

different.

a)  (8 points)  Explain why a microprogrammed control unit is slower than a hardwired control unit?

b)  (7 points)  The  microinstruction at µµµµAddresses 3 of the microprogram on the next page is the lastPC b PC + 1

line of the “Fetch”, so it gets performed for every machine-language instruction.  However, the JUMP and JUMPI

instructions wipe out the PC value later when “Executed”.  Describe how we could modify the microprogram to

eliminate this inefficiency.

Spring 2009                                                                                                      Name: ______________________

4



c)  (15 points)  Extend the partial microprogram below to include microoperations to decode and implement the

execution of the instructions:  ADDI and JUMPI.  (Fill in only the bolded boxes)

Revised Figure 4.21  Partial Microprogram

24PC bMBR

23MBR bM[MAR]

22MAR b IR[11-0]Execute JUMPI

21AC b AC + MBR

20MBR bM[MAR]

19MAR bMBR

18MBR bM[MAR]

17MAR b IR[11-0]Execute ADDI

1011101011116If HALT, Jump

1011001011115If OUTPUT, Jump

1010101011114If INPUT, Jump

1110001011113If JUMPI, Jump

1000001011112If JNS, Jump

1101001011111If CLEAR, Jump

1101101011110If ADDI, Jump

110010101119If JUMP, Jump

101000101118If SUBT, Jump

110000101117If SKIPCOND, Jump  Table”)

100100101116If STORE, Jump(“Jump

100010101115If LOAD, Jump

100110101114If ADD, JumpDecode

000000100003PC b PC + 1

000000001012IR bMBR

000000011001MBR bM[MAR]

000000010010MAR b PCFetch

DestJump

MicroOp2MicroOp1

µµµµAddr

RTN

(of MicroOp1)

Part 

of 

Cycle

Spring 2009                                                                                                      Name: ______________________

5


