\qquad

Homework \#1 Computer Organization

Due: February 1, 2019 (Friday) by 3:00 PM

1. Perform the following calculations (assume unsigned \#'s with an infinite number of bits/digits):
(a)
(b)
(c)
(d)

$$
\begin{array}{r}
1001110010_{2} \\
+0110110111_{2} \\
\hline
\end{array}
$$

$$
\begin{array}{r}
101001010_{2} \\
-010011101_{2} \\
\hline
\end{array}
$$

$$
\begin{array}{r}
\text { A43E61 } \\
+7 \mathrm{C7989} \\
16
\end{array}
$$

$$
\mathrm{A} 43 \mathrm{E} 61_{16}
$$

$$
-\underline{4 A 8 E 7 A_{16}}
$$

2. Represent the following decimal numbers in binary using 16-bit signed magnitude, one's complement, and two's complement:

decimal \#	signed magnitude 16-bits	one's complement 16-bits	two's complement 16-bits
207_{10}			
-94_{10}			

3. Using 16-bits what is the range of values for each of the following representations: (You may leave your answer as an equation contain powers of 2.)
a) unsigned integers:
b) signed integers using two's complement:
4. What decimal (base 10) value is represented by the 32-bit signed, two's complement value FFFF $87 \mathrm{Fb}_{16}$? (The 32-bits two's complement value is shown as a hexidecmal so I did not need to write a 32-bit binary number.)
5. Use Booth's algorithm to calculate the 16 -bit product of $10101101_{2} \times 11101011_{2}$. (Show your work on a separate page)
\qquad
6. Convert -108.53125 10 to its 32-bit IEEE-754 floating point representation.
7. Suppose A, B and C are normalized 32-bit IEEE 754 floating point variables with A having a real value of $1.101_{2} \times 2^{90}$ and B having a real value of $1.11_{2} \times 2^{31}$. After the high-level language assignment statement " $\mathrm{C}=\mathrm{A}+\mathrm{B}$ ", why is C's value equal to A's value and not the mathematically correct sum? (A's normalized 32-bit IEEE 754 representation would be: 01101100110100000000000000000000) (B's normalized 32-bit IEEE 754 representation would be: 01001111011000000000000000000000)
8. For the same values of A and B in question 7, would the high-level language assignment statement " $\mathrm{C}=\mathrm{A}+\mathrm{B}$ " assign C the mathematically correct sum if A, B and C were using the 64 -bit IEEE 754 floating point format? (explain your answer)
