\qquad

Homework \#2 Computer Organization Due: Feb 8, 2019 (Friday) by 3 PM

1. Assuming each ASCII character is store as a byte (8-bits) WITH THE MOST-SIGNIFICANT BIT

BEING USED FOR EVEN-PARITY. What would the string "Fienup" be as a sequence of hexadecimal values. (For example, "cab" would be: $63_{16} E 1_{16} \mathrm{E} 2_{16}$)
2. The following Hamming codeword contains 8-bits of data (D_{7} to D_{0}), and four ($\mathrm{P}_{8}, \mathrm{P}_{4}, \mathrm{P}_{2}$, and P_{1}) even-parity bits to allow for one-bit error detection and correction. Determine if an error has occurred and correct it if possible.

12	11	10	9	8	7	6	5	4	3	2	1
D_{7}	D_{6}	D_{5}	D_{4}	P_{8}	D_{3}	D_{2}	D_{1}	P_{4}	D_{0}	P_{2}	P_{1}
1	1	0	1	1	1	0	1	0	1	1	0
$4+8$	$1+2+8$	$2+8$	$1+8$	8	$1+2+4$	$2+4$	$1+4$	4	$1+2$	2	1

3. Determine the Hamming codeword if the 8-bits of data $\left(D_{7}\right.$ to $\left.D_{0}\right)$ are 01011101_{2}, i.e., what are the values of the four even-parity bits $\left(\mathrm{P}_{8}, \mathrm{P}_{4}, \mathrm{P}_{2}\right.$, and $\left.\mathrm{P}_{1}\right)$ to allow for one-bit error detection and correction.

12	11	10	9	8	7	6	5	4	3	2	1
D_{7}	D_{6}	D_{5}	D_{4}	P_{8}	D_{3}	D_{2}	D_{1}	P_{4}	D_{0}	P_{2}	P_{1}
$4+8$	$1+2+8$	$2+8$	$1+8$	8	$1+2+4$	$2+4$	$1+4$	4	$1+2$	2	1

4. Let $\mathrm{D}=1011001010111010_{2}$ (16-bit data) with $\mathrm{G}=\mathrm{x}^{5}+\mathrm{x}^{2}+1$ is 100101_{2} (degree 5 polynomial)
a) Determine the CRC remainder:

b) Determine the codeword sent which is the data appended with the (5-bit) remainder.
c) Divide the codeword by the generator $G=x^{5}+x^{2}+1\left(100101_{2}\right)$ to check for an error. Remainder should be zero if no errors.
d) Introduce some random error into the codeword and check for an error by dividing by the generator $G=x^{5}+$ $x^{2}+1\left(100101_{2}\right)$
\qquad
5.

A	B	C	D	F
0	0	0	0	1
0	0	0	1	1
0	0	1	0	0
0	0	1	1	1
0	1	0	0	0
0	1	0	1	0
0	1	1	0	1
0	1	1	1	0
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	1
1	1	0	0	0
1	1	0	1	1
1	1	1	0	0
1	1	1	1	0

Identity Name	AND Form	OR Form	
Identity Law	$1 x=x$	$0+x=x$	
Null (or Dominance) Law	$0 x=0$	$1+x=1$	
Idempotent Law	$x x=x$	$x+x=x$	
Inverse Law	$x \bar{x}=0$	$x+\bar{x}=1$	
Commutative Law	$x y=y x$	$x+y=y+x$	
Associative Law	$(x y) z=x(y z)$	$(x+y)+z=x+(y+z)$	
Distributive Law	$x+y z=(x+y)(x+z)$	$x(y+z)=x y+x z$	
Absorption Law	$x(x+y)=x$	$x+x y=x$	
DeMorgan's Law	$(\overline{x y})=\bar{x}+\bar{y}$	$(\overline{x+y})=\bar{x} \bar{y}$	
Double Complement Law	$\overline{\bar{x}}=x$		

For the Boolean function F represented in the truth table:
a) write the sum-of-products (SOP) Boolean expression (i.e., where are the 1 's are in the F column, $\mathrm{F}=\bar{A} \bar{B} \bar{C} \bar{D}+\bar{A} \bar{B} \bar{C} D+\ldots$
b) draw the unsimplified circuit for this SOP expression, and determine the number of gate delays and circuit complexity (\# gates + \# inputs into those gates)
c) using a K-map (or the identities of Boolean algebra), simplify this function F as much as you can
d) draw the simplified circuit for your answer in part (c), and determine the number of gate delays and circuit complexity (\# gates + \# inputs into those gates) of this circuit
6. Draw the circuit (using AND, OR, and NOT gates) to implement a 32 -input to 1 -output multiplexer (MUX). Your MUX should have 5 control wires ($\mathrm{c}_{4}, \mathrm{c}_{3}, \mathrm{c}_{2}, \mathrm{c}_{1}, \mathrm{c}_{0}$) to select which input is switched to the single output. (You can use ". . ." to avoid drawing all the AND-gates of the whole MUX, but show enough to demonstrate your understanding of MUXs). Assume there is a 9-input limit to AND and OR gates.
b) How many gate delays does your MUX have?

