Name:___

Homework #2 Computer Organization Due: Feb 8, 2019 (Friday) by 3 PM

1. Assuming each ASCII character is store as a byte (8-bits) <u>WITH THE MOST-SIGNIFICANT BIT</u> <u>BEING USED FOR EVEN-PARITY</u>. What would the string "Fienup" be as a sequence of hexadecimal values. (For example, "cab" would be: $63_{16} E1_{16} E2_{16}$)

2. The following Hamming codeword contains 8-bits of data (D_7 to D_0), and four (P_8 , P_4 , P_2 , and P_1) even-parity bits to allow for one-bit error detection and correction. Determine if an error has occurred and correct it if possible.

12	11	10	9	8	7	6	5	4	3	2	1
D_7	D_6	D ₅	D_4	P ₈	D ₃	D_2	D_1	P_4	D_0	P ₂	P ₁
1	1	0	1	1	1	0	1	0	1	1	0
4+8	1+2+8	2+8	1+8	8	1+2+4	2+4	1+4	4	1+2	2	1

3. Determine the Hamming codeword if the 8-bits of data (D_7 to D_0) are 0101 1101₂, i.e., what are the values of the four even-parity bits (P_8 , P_4 , P_2 , and P_1) to allow for one-bit error detection and correction.

12	11	10	9	8	7	6	5	4	3	2	1
D ₇	D ₆	D ₅	D_4	P_8	D ₃	D_2	D ₁	P_4	D_0	P ₂	P ₁
4+8	1+2+8	2+8	1+8	8	1+2+4	2+4	1+4	4	1+2	2	1

4. Let D = 1011001010111010_2 (16-bit data) with G = $x^5 + x^2 + 1$ is 100101_2 (degree 5 polynomial)

a) Determine the CRC remainder:

b) Determine the codeword sent which is the data appended with the (5-bit) remainder.

c) Divide the codeword by the generator $G = x^5 + x^2 + 1$ (100101₂) to check for an error. Remainder should be zero if no errors.

d) Introduce some random error into the codeword and check for an error by dividing by the generator $G = x^5 + x^2 + 1$ (100101₂)

А	В	С	D	F		Identity Name	AND Form	OR Form
	0	0	0	1		Identity Law	1x = x	0+x=x
0			-	1		Null (or Dominance) Law	0 <i>x</i> = 0	1 <i>+x</i> = 1
0	0	0	1	1		Idempotent Law	XX = X	X + X = X
0	0	1	0	0		Inverse Law	$x\overline{x} = 0$	$x + \overline{x} = 1$
0	0	1	1	1		Commutative Law	xy = yx	x + y = y + x
						Associative Law	(xy)z = x(yz)	(x+y)+z=x+(y+z)
0	1	0	0	0		Distributive Law	x+yz=(x+y)(x+z)	x(y+z) = xy + xz
0	1	0	1	0		Absorption Law	x(x+y)=x	x + xy = x
0	1	1	0	1		DeMorgan's Law	$(\overline{xy}) = \overline{x} + \overline{y}$	$(\overline{x+y}) = \overline{x}\overline{y}$
0	1	1	1	0		Double Complement Law	$\overline{\overline{X}} = $	x
1	0	0	0	1				
1	0	0	1	1		the Boolean function F vrite the sum-of-produc	-	
1	0	1	0	1		I's are in the F column,		
1	0	1	1	1	b) d	lraw the unsimplified ci	rcuit for this SC	P expression, an
1	1	0	0	0	deter	rmine the number of ga	te delays and cir	cuit complexity
1	1	0	1	1	inpu	ts into those gates)		
1	1	1	0	0		sing a K-map (or the id		ean algebra), sim
1	1	1	1	0	Tunc	tion F as much as you c	can	
					deter	lraw the simplified circu rmine the number of ga ts into those gates) of th	te delays and cir	▲ 1 1 1 1 1

6. Draw the circuit (using AND, OR, and NOT gates) to implement a 32-input to 1-output multiplexer (MUX). Your MUX should have 5 control wires (c_4 , c_3 , c_2 , c_1 , c_0) to select which input is switched to the single output. (You can use ". . ." to avoid drawing all the AND-gates of the whole MUX, but show enough to demonstrate your understanding of MUXs). Assume there is a 9-input limit to AND and OR gates.

b) How many gate delays does your MUX have?