
Comp Org HW #8 Due: May 4 (Sat) 11:59 PM

Bit-string Set of Letters: (Here we are completing the operations started in Lecture 23. You can find code

for the bitString and Union there.)

You are to complete the operations for the set of letters using a bit string. Recall, the bit string representation

for the set of letters can use a 32-bit word with the least-significant bit associated with the letter 'A', etc.

'A''B''C''D''E''Z' 'Y' 'X' . . .

bit position: 25 24 23 4 3 2 1 0

{ 'A', 'B', 'D', 'Y' } is 0 1 0 0 1 0 1 1 0 0 0 0 0 0

 unused

The set of letters should have the following operations (subprograms):

Prints the bitString to the console using the

print_string system call. The set should be printed in

the conventional format, i.e., "{ E, G, T, Y }"

�passed an set bitStringprint

Returns 1 (true) if the .ASCII character is in the

bitString set; otherwise return 0 (false).

�passed an .ASCII character and

a set bitString

�returns a Boolean (0 for false

or 1 for true)

contains

The resulting set should contain the elements that are

in the first set, but not also in the second set.

�passed two set bitStrings

�returns the set difference of the

first set - second set

difference

The resulting set should contain the elements that are

in both of the input sets.

�passed two set bitStrings

�returns the set intersection of

the two sets

intersection

The resulting set should contain the elements that are

in one or both of the input sets.

�passed two set bitStrings

�returns the set union of the two

sets

union

 (done in

Lecture 23)

Returns a bit string corresponding to the set of letters

in the .ASCIIZ string. Non-letter characters are

ignored, and both upper and lower-case letters should

be represented as the upper-case letter.

�pass in a pointer to the an

.ASCIIZ string

�returns a word containing the

set of letters as a bitString

bitString

(done in

Lecture 23)

DescriptionParametersSubprogram

Name

Additionally, you should have a main program that

1) allows a user to interactively enter two strings (use the PCSpim I/O syscall),

2) constructs two bitString sets from these strings,

3) prints the set of letters contained in each string,

4) determines and prints the union, intersection, and difference of the two bitString sets from (1) and (2),

5) checks to see if the first bitString set contains the letters: 'A', 'Y', and 'Z'. The results of each of these

checks should be printed to the console.

You should submit your homework via the Internet by following the directions at:

http://www.cs.uni.edu/~fienup/cs1410s19/homework/submissionDirections.htm

Basically, you put the file hw8.s in a hw8 folder and zip the folder to create a hw8.zip file containing:

� the MIPS assembly language program, e.g., hw8.s from any text-editor (e.g., WordPad),

� a window capture of the output window after running your assembly language program using the

two strings: “Bats and balls” and “BIGGER IS BETTER”

Partial code to implement a bit-string of letters

.data

str1: .asciiz "Cape3?!AE"

str2: .asciiz "A d y B**#&."

set1: .word 0

set2: .word 0

.text

.globl main

main:

la $a0, str1

jal bitString

sw $v0, set1

la $a0, str2

jal bitString

sw $v0, set2

li $v0, 10

syscall

bitString:

bitString Algorithm:

resultSet = {}

index = 0

while True:

nextChar = str[index]

if nextChar == 0 then // the NULL character

break

end if

if nextChar >= ascii of 'a' and nextChar <= ascii of 'z' then

convert it upper-case letter by subtracting 32

end if

if nextChar >= ascii of 'A' and nextChar <= ascii of 'Z' then

resultSet = resultSet U {nextChar}

end if (no else because we are ignoring non-letters)

index = index + 1

end while

return resultSet

Register Usage - NOTE: doesn't call anything so by using only $a and $t registers, doesn't need

to save on stack

$a0 parameter contains address of .asciiz string, but will be walked down the string

$v0 used for the resultSet

$t0 used to hold nextChar ASCII value

$t3 used to hold the mask for the str[index] character

 li $v0, 0 # resultSet = {}

while:

lb $t0, 0($a0)

beq $t0, 0, end_while # NULL character (0) detected at end of .asciiz

if_1: blt $t0, 97, end_if_1 # ASCII for 'a' is 97

bgt $t0, 122, end_if_1 # ASCII for 'z' is 122

addi $t0, $t0, -32 # convert to upper-case letter

end_if_1:

if_2: blt $t0, 65, end_if_2 # ASCII for 'A' is 65

bgt $t0, 90, end_if_2 # ASCII for 'Z' is 90

addi $t8, $t0, -65 # determine bit position of letter in bit-string

li $t3, 1 # Build mask: start with 1 at right-most position

sllv $t3, $t3, $t8 # Build mask: move 1 to correct position to finish building mask

or $v0, $v0, $t3 # update resultSet in $v0 = $v0 bit-wise-OR with mask

end_if_2:

addi $a0, $a0, 1 # walk-pointer to str[index] to next character

j while

end_while:

jr $ra

