Summing 100,000 Numbers on 10 Processors

Start by distributing 10,000 elements of vector A to each of the local memories (in A_l) and summing each subset in parallel

```c
sum = 0;
for (i = 0; i < 10000; i = i + 1)
    sum = sum + A_l[i];  /* sum local array subset */
```

The processors then coordinate in adding together the partial sums (P_n is the number of the processor, send(x,y) sends value y to processor x, and receive() receives a value)

```c
half = 10;
limit = 10;
repeat
    half = (half + 1) / 2;  /* dividing line */
    if (P_n >= half && P_n < limit)
        send(P_n-half, sum);
    if (P_n < (limit/2))
        sum = sum + receive();
    limit = half;
until (half == 1);  /* final sum in P0's sum */
```

1. Trace the second segment of code that adds together the partial sums assuming 10 processors.

```
sum    sum    sum    sum    sum    sum    sum    sum    sum    sum
P0     P1     P2     P3     P4     P5     P6     P7     P8     P9
```
2. For a 64 processor system, compare the interconnection network for each of the following topologies.

<table>
<thead>
<tr>
<th></th>
<th>Bus</th>
<th>Ring</th>
<th>Torus</th>
<th>6-cube</th>
<th>Fully connected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network bandwidth</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bisection bandwidth</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total # of Switches</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Links per switch</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total # of links</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>