
Serial Execution

Instruction 2

Instruction 3

Instruction 4

Instruction 5

Instruction 1

time

Pipelined Execution - Original RISC goal is to complete one instruction per clock cycle

Instruction 2

Instruction 3

Instruction 4

Instruction 5

Instruction 1

time

Advanced Architectures - multiple instructions completed per clock cycle

1. superpipelined (e.g., MIPS R4000)- split each stage into substages to create finer-grain stages

Instruction 2

Instruction 3

Instruction 4

Instruction 5

Instruction 1

time

Lecture 21 - 1

2. superscalar (e.g., Intel Pentium, AMD Athlon)- multiple instructions in the same stage of
execution in duplicate pipeline hardware

Instruction 2

Instruction 3

Instruction 4

Instruction 5

Instruction 6

Instruction 1

time

Alternatively, avoid duplicating hardware for all stages of the pipeline by only allowing several
instructions in the "execute" stage on different functional units

Lecture 21 - 2

Figure 14.6: Conceptual Depiction of Superscalar Processing

3. very-long-instruction-word, VLIW (e.g., Intel Itanium) - compiler encodes multiple
operations into a long instruction word so hardware can schedule these operations at run-time
on multiple functional units without analysis

Lecture 21 - 3

machine parallelism - the ability of the processor to take advantage of instruction-level
parallelism. This is limited by:
� number of instructions that can be fetched and executed at the same time (# of parallel

pipelines)
� ability of the processor to find independent instructions (the processor needs to look ahead of

the current point of execution to locate independent instructions that can be brought into the
pipeline and executed without hazards)

Limitations of superscalar - how much “instruction-level parallelism” (ILP) exists in the
program. Independent instructions in the program can be executed in parallel, but not all can be.

1) true data dependency: SUB R1, R2, R3 ; R1 R2 - R3b

ADD R4, R1, R1 ; R4 R1 + R1b

Cannot be avoided by rearranging code

2) procedural dependency - cannot execute instructions after a branch until the branch executes

3) resource conflict / structural hazard - several instructions need same piece of hardware at the
same time (e.g., memory, caches, buses, register file, functional units)

Three types of orderings:
1) order in which instructions are fetched
2) order in which instructions are executed (called instruction issuing)
3) order in which instructions update registers and memory

The more sophisticated the processor, the less it is bound by the strict relationship between these
orderings. The only real constraint is that the results match that of sequential execution.

Some Categories:
a) In-order issue with In-order completion.

b) In-order issue with out-of-order completion

Problem: Output dependency / WAW dependency (Write-After-Write)

I1: R3 R3 op R5b

I2: R4 R3 + 1b

I3: R3 R5 + 1b

I4: R7 R3 op R4 ; R3 value generated from I3 must be usedb

Lecture 21 - 4

c) Out-of-Order Issue (decouple decode and execution) with Out-of-Order Completion

Instruction window provides a pool of possible instructions to be executed:
� filled after decode
� removed when issued if (1) fn. unit is available and (2) no conflicts or dependencies

Antidependency / WAR (Write-After-Read)

I1: R3 R3 op R5b

I2: R4 R3 + 1b

I3: R3 R5 + 1 ; If executed out-of-order, then I2 could get wrong value for R3b

I4: R7 R3 op R4b

Notice that I3 is just reusing R3 and does not need its value, so it is just a conflict for the use of a
register.

Register Renaming is a solution to this problem; We allocate a different register dynamically at
run-time

I1: R3b R3a op R5a ; R3b and R3a are different registersb

I2: R4b R3b + 1b

I3: R3c R5a + 1b

I4: R7b R3c op R4bb

Lecture 21 - 5

Example using Tomasulo’s Algorithm

6

5

4

3

2

1

Load Buffer

From Memory From Instruction Unit

Busy Tag Data

F0

F2

F4

F6

F8

F10

FP op.s queue

FP Registers

 FP Adders

8

9

10

11

12

13

 FP Multiplers

Store Buffer

To All
 Tags

Tag Data Tag Data Tag Data Tag Data

Common Data Bus

To Memory

Tag Data

 LD F6, 34 (R2)

 LD F2, 45 (R3)

 MULTD F0,F2,F4

 SUBD F8, F6, F2

 DIVD F10,F0,F6

 ADDD F6, F8, F2

(front)

(rear)

Reservation
Stations

As instructions are issued, register specifiers for pending operands are
renamed to names of reservation stations.

When both operands are available and a functional unit is available, the
instruction in the reservation station can be executed.

When the result is available, it is put on the CDB with the reservation that
produced it. All reservation stations waiting to use that result will update
their operands simultaneously.

Operation:

Busy - indicates if current value in reg.
 0 - available in reg. 1 - not avail.
Tag - reservation that will supply
 register value.

 7

Lecture 21 - 6

Tomasulo's Algorithm is an example of dynamic scheduling. In dynamic scheduling the ID -
WB stages of the five-stage RISC pipeline are split into three stages to allow for out-of-order
execution:
1. Issue - decodes instructions and checks for structural hazards. Instructions are issued

in-order through a FIFO queue to maintain correct data flow. If there is not a free reservation
station of the appropriate type, the instruction queue stalls.

2. Read operands - waits until no data hazards, then read operands
3. Write result - send the result to the CDB to be grabbed by any waiting register or reservation

stations
All instructions pass through the issue stage in order, but instructions stalling on operands can be
bypassed by later instructions whose operands are available.

RAW hazards are handled by delaying instructions in reservation stations until all their operands
are available.

WAR and WAW hazards are handled by renaming registers in instructions by reservation station
numbers.

Load and Store instructions to different memory addresses can be done in any order, but the
relative order of a Store and accesses to the same memory location must be maintained. One way
to perform dynamic disambiguation of memory references, is to perform effective address
calculations of Loads and Stores in program order in the issue stage.
� Before issuing a Load from the instruction queue, make sure that its effective address does

not match the address of any Store instruction in the Store buffers. If there is a match, stall
the instruction queue until, the corresponding Store completes. (Alternatively, the Store
could forward the value to the corresponding Load)

� Before issuing a Store from the instruction queue, make sure that its effective address does
not match the address of any Store or Load instructions in the Store or Load buffers.

Lecture 21 - 7

Smith ’95 Studied the relationship between out-of-order issue, duplication of resources, and
register renaming on R2000 architecture. (Figure 14.5)

1) base machine - no duplicate functional units, but can issue out-of-order

2) + ld/st: duplicates load / store functional unit that access data cache

3) + alu: duplicates ALU

4) + both: duplicates both load/store and ALU

Differences shown for window sizes of 8, 16, and 32 instructions with and without register
renaming

Conclusions: study shows that superscalar machines:
� need register renaming to significantly benefit from duplicate functional units
� with renaming a larger window size is important

Lecture 21 - 8

Branch prediction - usually used instead of delayed branching since multiple instructions need
to execute in the delay slot causing problems related to instruction dependencies

Committing / Retiring Step - needed since instructions may complete out-of-order

Using branch prediction and speculative execution means some instructions’ results need to be
thrown out

Results held is some temporary storage and stores performed in order of sequential execution.

Lecture 21 - 9

Pentium 4 Processor

� 80486 - CISC
� Pentium

- some superscalar components
- two separate integer execution units

� Pentium Pro – Full blown superscalar
� Subsequent models refine & enhance superscalar design

Lecture 21 - 10

Pentium 4 Operation:
� Fetch CISC x86 instructions form memory in order of static program
� Translate instruction into one or more fixed length RISC instructions (micro-operations)
� Execute micro-ops on superscalar pipeline

- micro-ops may be executed out of order
� Commit results of micro-ops to register set in original program flow order
� Outer CISC shell with inner RISC core
� Inner RISC core pipeline at least 20 stages

- Some micro-ops require multiple execution stages
- Longer pipeline than five stage pipeline on x86 up to Pentium

Lecture 21 - 11

b) Trace cache (L1 cache) stores recently executed mico-op’s
BTB uses dynamic branch prediction (4-bits used via Yeh’s
algorithm). Static prediction used if not in BTB.

a) Fetch 64 bytes of Pentium 4 (CISC) instruction(s) from L2
cache and decode instruction boundaries and translates Pentium
4 (CISC) intructions into micro-op’s (RISC)

Lecture 21 - 12

d) Drive delivers decoded instructions from the trace cache to
the rename/allocate module.

c) Pulls micro-ops from cache (or ROM microprogrammed
control unit for very complex instructions) in program sequence
order

Lecture 21 - 13

Out-of-Order Execution Logic:

(ROB entry contains: state, memory address of generating instruction, micro-op, renamed register

Two FIFO queues to hold micro-ops until there is room in the scheduler.
One queue holds load or stores micro-ops
One queue hold the remaining nonmemory micro-ops

Queues can operate at different speeds

Allocate - allocates resources needed for
execution:
� stalls pipeline if a resource (e.g., register) is

unavailable
� a reorder buffer (ROB) to store information

about a micro-op as it executes
� one of 128 integer or float registers for the

result and/or one of 48 load buffers or one
of 24 store buffers

� an entry in one of the two micro-op queues

Lecture 21 - 14

Up to 6 micro-ops can be dispatched per cycle.Scheduler retrieves micro-ops from queues for
dispatching/issuing for execution if all operands and execution
unit are available.

Lecture 21 - 15

Compute flags - N, Z, C, V to use an input to the branchesExecution units retrieve necessary integer and floating point
registers

Lecture 21 - 16

If branch outcome does not match prediction, remove micro-ops
from the pipeline. Provide proper branch destination to the BTB
which restarts the whole pipeline from the correct target address.

Compares the actual branch result with the prediction.

Lecture 21 - 17

Itanium Processor
Interesting Features:
� Uses explicit parallel instruction computing (EPIC) from very-long-instruction-word (VLIW) architecture. In EPIC the compiler

encodes multiple operations into a long instruction word so hardware can schedule these operations at run-time on multiple
functional units without analysis. On the Itanium, a three instruction bundle is read -- Figure 14.6.

template field maps instruction slots to execution types (integer ALU, non-ALU integer, memory, floating-point, branch, and
extended)

� Provides hardware support for efficient procedure calls and returns -- large number of registers with overlapping register windows
(see Figure 14.1)

Itanium: first 32 registers for global variables and remaining 96 registers for local variables and parameters.

Lecture 21 - 18

� Features to Enhance ILP: (1) Predication of eliminate branches, (2) Hiding memory latency by speculative loads, and (3)
Improving branch handling by using predication

Lecture 21 - 19

