Serial Execution

time ——»

Instruction 1

Instruction 2

Instruction 3

Instruction 4

Instruction 5

Pipelined Execution - Original RISC goal is to complete one instruction per clock cycle

Instruction 1 !

Instruction 2

Instruction 3

Instruction 4

Instruction 5

Advanced Ar chitectur es- multiple instructions completed per clock cycle
1. superpipelined (e.g., MIPS R4000)- split each stage into substages to create finer-gras stag

time ——»

Instruction 1 | ' [' |||

Instruction 2 N

Instruction 3 vl]

Instruction 4 AEERERE R

Instruction 5 AR

Lecture 21 -1

2. superscalar (e.g., Intel Pentium, AMD Athlon)- multiple instructions in the same stage of
execution in duplicate pipeline hardware

Instruction 1

Instruction 2

Instruction 3

Instruction 4

Instruction 5
Instruction 6

Alternatively, avoid duplicating hardware for all stages of the pipeline by oolyiall several
instructions in the "execute" stage on different functional units

Integer
execution
unit 1

Integer
execution
unit 2

Result
write back

Instruction Instruction Operand
fetch decode fetch
unit unit unit

unit

Floating-point
execution
unit 1

Floating-point
execution
unit 2

N\
\\//

Lecture 21 - 2

Figure 14.6: Conceptual Depiction of Superscalar Processing

instruction instruction

instruction fetch dispatch issue

_ and branch Ir— _______ 1 instruction instruction
static prediction I / ! execution reorder and
program ! commit
//I#
[
[
——-- — -
I h""----....‘
\-L "_‘_'_,_‘-""
[
I \
[
1
L ____ —
window of
execution

3. very-long-instruction-word, VLIW (e.g., Intel Itanium) - compiler encodes multiple
operations into a long instruction word so hardware can schedule these operations a run-tim
on multiple functional unitsvithout analysis

Lecture 21 -3

machine parallelism - the ability of the processor to take advantage of instruction-level

parallelism. This is limited by:

* number of instructions that can be fetched and executed at the same time (# of parallel
pipelines)

* ability of the processor to find independent instructions (the processor needs to look ahead of
the current point of execution to locate independent instructions that can be brought into the
pipeline and executed without hazards)

Limitations of superscalar - how much “instruction-level parallelism” (ILP) exists in the
program. Independent instructions in the program can be executed in parallel, but not all can be

1) true data dependency: SUB R1, R2, R3 <R1 R2-R3
ADD R4,R1,R1 ;R4 R1+R1
Cannot be avoided by rearranging code

2) procedural dependency - cannot execute instructions after a branch until the bramels exec

3) resource conflict / structural hazard - several instructions need samefghacdware at the
same time (e.g., memory, caches, buses, register file, functional units)

Three types of orderings:

1) order in which instructions are fetched

2) order in which instructions are executed (calliett uction issuing)
3) order in which instructions update registers and memory

The more sophisticated the processor, the less it is bound by the strict relationsbgnlibese
orderings. The only real constraint is that the results match that of sequestisi@x

Some Categories:
a) In-order issue with In-order completion.

b) In-order issue with out-of-order completion

Problem: Output dependency / WAW dependency (Write-After-Write)
11: R3< R30op R5

12: R4~ R3+1

13: R3« R5+1
14: R7 < R3 op R4 ; R3 value generated from I3 must be used

Lecture 21 - 4

c) Out-of-Order Issue (decouple decode and execution) with Out-of-Order Completion

Instruction window provides a pool of possible instructions to be executed:
 filled after decode
* removed when issued if (1) fn. unit is available and (2) no conflicts or dependencies

Antidependency / WAR (Write-After-Read)

11: R3< R30op R5

12: R4~ R3+1

13: R3« R5+1 ; If executed out-of-order, then I12 could get wrong value for R3
14: R7< R3 op R4

Notice that I3 is just reusing R3 and does not need its value, so it is just a conflictuse thfea
register.

Register Renaming is a solution to this problem; We allocate a different register dynamitally a
run-time

11: R3 < R3,0p R4 ; R& and R3are different registers
12: R4, <R3 +1

13: R <R5+1

14: R7, <« R3 op R4

Lecture 21 -5

From Memory
Load Buffer‘L

From Instruction Unit
FP op.s queu%

7 ADDD F6, F8, F2(rear)
6 DIVD F10,FO0,F6 Busy - indicates if current value in reg.
5 SUBD FS8, F6, F2 0 - available in reg. 1 - not a\
4 MULTD FO.F2.F4 Tag - rese_rvatlon that will supply
register value.
3 LD F2, 45 (R3) '
5 LD F6, 34 (R2) |(front) FP Registers
1
Busy Ta Data
FO
F2
To All F4
Tags F6
F8
F10
Reservation
Tag Dat Tag D Tag Qata Tag (Pa@ ions
8 11
9 12
10 13
FP Adders FP Multiplers
Common Data Bus
Operation:
Tag Data As instructions are issued, register specifierpfding operands are

Store Buffer

renamed to names of reservation stations.

To Memory their operands simultaneously.

Lecture 21 -6

When both operands are available and a functiamalisiavailable, the
instruction in the reservation station can be etextu

When the result is available, it is put on the CBiEh the reservation that
produced it. All reservation stations waiting &euhat result will update

Tomasulo's Algorithm is an exampledyinamic scheduling. In dynamic scheduling the ID -
WB stages of the five-stage RISC pipeline are split into three stagésvid@l out-of-order
execution:

1. Issue - decodes instructions and checks for structural hazards. Instructions are issued
in-order through a FIFO queue to maintain correct data flow. If there is not a Beetiem
station of the appropriate type, the instruction queue stalls.

2. Read operands - waits until no data hazards, then read operands

3. Writeresult - send the result to the CDB to be grabbed by any waiting register or reservation
stations

All instructions pass through the issue stage in order, but instructions stalling omdspsaa be

bypassed by later instructions whose operands are available.

RAW hazards are handled by delaying instructions in reservation stations uhgiratigerands
are available.

WAR and WAW hazards are handled by renaming registers in instructions by liesestation
numbers.

Load and Store instructions to different memory addresses can be done in any order, but the
relative order of a Store and accesses to the same memory location must haedai@tze way
to performdynamic disambiguation of memory references, is to perform effective address
calculations of Loads and Stores in program order in the issue stage.
= Before issuing a Load from the instruction queue, make sure that its effectivesattures
not match the address of any Store instruction in the Store buffers. If there i astaditc
the instruction queue until, the corresponding Store completes. (Alternatively, the Stor
could forward the value to the corresponding Doad
= Before issuing a Store from the instruction queue, make sure that its effectiessadioes
not match the address of any Store or Load instructions in the Store or Load buffers.

Lecture 21 -7

Smith '95 Studied the relationship between out-of-order issue, duplication of resources, and
register renaming on R2000 architecture. (Figure 14.5)

‘Without renaming With renaming
Speedup Speedup
4 4 B
3 3 —
2 — 2 —
1 o 1 —
0 0
hase +ld/st +alu +hoth hase +ld/st +alu +hoth

Figure 14.5 Speedups of Various Machine Organizations Without Procedural Dependencies

1) base machine - no duplicate functional units, but can issue out-of-order
2) +Id/st: duplicates load / store functional unit that access data cache
3) + alu: duplicates ALU

4) + both: duplicates both load/store and ALU

Differences shown for window sizes of 8, 16, and 32 instructions with and without register
renaming

Conclusions: study shows that superscalar machines:
* need register renaming to significantly benefit from duplicate functional units
* with renaming a larger window size is important

Lecture 21 - 8

Branch prediction - usually used instead of delayed branching since multiple instructions need
to execute in the delay slot causing problems related to instruction dependencies

Committing / Retiring Step - needed since instructions may complete out-of-order

Using branch prediction and speculative execution means some instructions’ rexutis be
thrown out

Results held is some temporary storage and stores performed in order of sequesntiadre

Lecture 21 -9

Pentium 4 Processor

* 80486 - CISC
* Pentium
- some superscalar components
- two separate integer execution units
* Pentium Pro — Full blown superscalar
* Subsequent models refine & enhance superscalar design

o e L2 Cache and Control ﬁ
.E Slore
E BTB B P agu[—"
E D Load N
: : - & el
z — En
2 > = :
& —
i . 2 |z |z £ a
A N o B o 21 2™ [ALU|
: 2 [T1E18 712 E
=
2| |2 £ 3| | g [# g
P =
= FP move O
— E ™ ppgiore [
3 E] FMul
peode | | & |ep| Fadd
AGL = address genemtion unit ROM MMX

BTE = hranch tamget bulTer
[>-TLE = data tranmslatiom lookaside buffer
I-TLE = instruction trarslaton lookaside huffer

Lecture 21 - 10

Pentium 4 Operation:

Fetch CISC x86 instructions form memory in order of static program
Translate instruction into one or more fixed length RISC instructions (microtmpea
Execute micro-ops on superscalar pipeline
- micro-ops may be executed out of order
Commit results of micro-ops to register set in original program flow order
Outer CISC shell with inner RISC core
Inner RISC core pipeline at least 20 stages
- Some micro-ops require multiple execution stages
- Longer pipeline than five stage pipeline on x86 up to Pentium

TCNxt IP| TC Fetch |DrivelAlloc] Kename
| I ,

TC Next IP = trace cache next struction polnier Kename = register renaming KF = register fils

TC Betch = itace cache feich Jue = micm-op queling Ex = execule
Alloc = allocate Sch = micw-op scheduling Flgs = flags
[Mep = IMspaich Br Ck = branch check

Lecture 21 - 11

L2 Cache and Comvtrol

— l
ETE o Jeeacu
I T {1 e
—FE.I ALl E
a el | 2| [LELE] |8
L8 & LS §__§-..'..@ B
= o -
o 18 2 (e (o] Bl s
-l-EﬂlFmH-hE
I : =
anl. ~+{ fes FOP

(a) Generation of mico-ops

L2 Cache and Comtool "—1

ETE B AQU
_ -+ 5 .
-‘51 AL ﬁ

a —- AlA
al 12| 2| |2 § N %

: 7 z = -

——|-é=—||-|;§-l||—||-E—m-':::'ll—l-E"'l ALY P
EEIREE F]
Bl |2 & 2l 1B 12 M =
ml |2 | B gl |= &
-Eﬁﬁ'ﬂ'ﬂ-tﬁ
| = "

ROML e B e Bl

{b) Trace cache next instruction peinter

a) Fetch 64 bytes of Pentium 4 (CISC) instruction(s) from L2
cache and decode instruction boundaries and translates Per

» b) Trace cache (L1 cache) stores recently executed mico-of
1tRINB uses dynamic branch prediction (4-bits used via Yeh's

4 (CISC) intructions into micro-op’s (RISC)

algorithm). Static prediction used if not in BTB.

Lecture 21 - 12

L2 Cache and Control ‘—1 L2 Cache and Corvtrol —

ETE R e JL ETE TR

] _ _ -rE AU] . —EE A
sl [wf 5
i 5 "'3"@ 2 i 5 "'3“@ 2
= s la | el sree | fellel 2 Ll e e
O IR 0 Nt = | L & =L 2l v*__;__'_a- v L0 =
=] e g i = — & e e o Il 2
SRERD N IRERER: —|'—'§ RERERBERER: |'—'§
B | = = al & AR = o 3| | @
—+ o (e Fns S el 4 Laef F178) S
5 | — = 5 2 = -

ROM]| [FoD ROML i e i

() Trace ¢ ache Fetch () Drive

c) Pulls micro-ops from cache (or ROM microprogrammed | d) Drive delivers decoded instructions from the trace cache to
control unit for very complex instructions) in program sequendbe rename/allocate module.
order

Lecture 21 - 13

Out-of-Order Execution Logic:

L2 Cache and Control

-I- ETE [Jeslam
ma = Al
o el 0l al o]
| (2] | & 2 (2] [2bE =
o I -1 I = = Ny Wy
ral-.é_* = E & E| L
3 X I'—
m| |2 & 2= M
ARERERE: BERE
-rE-lHIFH'IE-h
R ; - o
ROM] | fes FO

() Allecatey Regster renaming

L1 I-C ache and I-TLE

 —

ETE & I-TLE

Bty The oo che

L2 Cache and Controel “—-L

ETE =t AT *
AL
= g | B
o *Ell ALA [-|I
.E = E‘ E"‘E ALl =
ﬁ = H‘ 2-!- ALl E
S EBErLeE |
N E 2 E
-IIE F1TB-E
m:rml. —~ Hop

() Micvo-op quening

(ROB entry contains: state, memory address of generating instruction, micemamed register

Allocate - allocates resources needed for
execution:

unavailable

» areorder buffer (ROB) to store inform
about a micro-op as it executes

» one of 128 integer or float registers fo

of 24 store buffers

» stalls pipeline if a resource (e.g., register)

result and/or one of 48 load buffers or ong¢

* an entry in one of the two micro-op queues

Two FIFO queues to hold micro-ops until there is room in the scheduler.
One queue holds load or stores micro-ops
i®ne queue hold the remaining nonmemory micro-ops

ationQueues can operate at different speeds

r the

D\

Lecture 21 - 14

L2 Cache and Contraol '—1

ETE [el
I T) T -
—h% ALl E
o 'g - W *3"@ E

ﬁ = = = *El‘@
= a C 7 —2 o
9 |Z| | = e — E
m |2 = gl |& ﬁ m =
m| [&] | F g |2 <
-I-E nll:"'mﬂ-hE
B I o ~

T
anl. —+ [FOP

() Micro-op sche duling

L2 Cache and Cormvtranl

|

ETE] L
I S AU |t
-!-E.Iﬂ-ﬂ]
i -
31| 2] |3 a-pé‘"@-@
O I SRR I § B]
ol — [] i O
al |87 % el e 3
= - & g £ &
=12l | E g = ol
i O 1TIS =i
S O U |
s Fi
ROML n B e B

L1 D-Cache and D-TLE

{h) Dispatch

Scheduler retrieves micro-ops from queues for
dispatching/issuing for execution if all operands and executi(

Up to 6 micro-ops can be dispatched per cycle.
DN

unit are available.

Lecture 21 - 15

L2 Cache and Contraol ‘—1

ETE
_
.
3 - o z m m =
SRR RERE R E
E—lé—r o R "E CE:H_E :
£ 5 g E 2|2 E
AR = #1327 ¥
—pﬁﬂFlT.lﬂ—lE
—— | — = B a
ROM]| ol feof Fop
(i) Register file

L2 Cache and Cormvtranl =

JL ETE T
i . O
wf £
=+ S beefia]
m o z W wml]2
312 2| 1B 3] [eeEemm |2
;"'a-‘v —l-'E—l-EI—lIE" +{a1s] E
o 'E g E E E]—'E
B | = = @l |2 I° ¥
-.-EMFDI-Q
i - = ¥
ROML ~+ b FOD

{J) Execute; Flags

Execution units retrieve necessary integer and floating point
registers

Compute flags - N, Z, C, V to use an input to the branches

Lecture 21 - 16

L2 Cache and Cormtrol ‘1 L2 Cache and Cormtrnl =

ETE BBl -[-
B g " - "
e | " -
: e a1 . : — .
¥4) - o =

al [F] | 2 (g el |2 al 12 | = Eoz| |2f 2
D = = = = = D = = = = =
ol e - e I rh‘E-—hgl-—rE"' He = =18 © .-‘E—FE,—-E" =
P -1 b e P -1 e
al 1312 (| 12 [2] B m—2 1RERER BERER: E
AR = E al A e al e = E al [« N
454%5*% 454&1‘!4%
] - = - 1 - = -

ROML —+ fee FOD ROML ~ [Fop

(k) Branch check I3 Branch check result
Compares the actual branch result with the prediction. If branch outcome does not match prediction, remove micro{ops

from the pipeline. Provide proper branch destination to the BTB
which restarts the whole pipeline from the correct target address.

Lecture 21 - 17

I tanium Processor
Interesting Features:
= Usesexplicit parallel instruction computing (EPIC) from very-long-instruction-word (VLIW) architecture. In EPIC the compiler
encodes multiple operations into a long instruction word so hardware can schedule théism®péran-time on multiple
functional units without analysis. On the Itanium, a three instruction bundle is regdre F.6.

127 87 86 46 45 54 0

Instruction slot 2 Instruction slot 1 Instruction slot 0 | Template
41 bits 41 bits 41 bits 5 bits

template field maps instruction slots to execution types (integer ALU, non-Aieder, memory, floating-point, branch, and
extended)

= Provides hardware support for efficient procedure calls and returns -- large numdggstefs with overlapping register windows
(see Figure 14.1)

Register window at level K

Incoming Local Outgoing
parameter variable parameter
registers registers registers
~—— 7
call/return
Incoming Local Outgoing
parameter variable parameter
registers registers registers

Global
registers

Register window at level (K + 1)

Itanium: first 32 registers for global variables and remaining 96 registeliecal variables and parameters.

Lecture 21 - 18

» Features to Enhance ILP: (1) Predication of eliminate branches, (2) Hiding mateocy by speculative loads, and (3)
Improving branch handling by using predication

Lecture 21 - 19

