
Example using Tomasulo’s Algorithm

6

5

4

3

2

1

Load Buffer

From Memory From Instruction Unit

Busy Tag Data

F0

F2

F4

F6

F8

F10

FP op.s queue

FP Registers

 FP Adders

8

9

10

11

12

13

 FP Multiplers

Store Buffer

To All
 Tags

Tag Data Tag Data Tag Data Tag Data

Common Data Bus

To Memory

Tag Data

 LD F6, 34 (R2)

 LD F2, 45 (R3)

 MULTD F0,F2,F4

 SUBD F8, F6, F2

 DIVD F10,F0,F6

 ADDD F6, F8, F2

(front)

(rear)

Reservation
Stations

As instructions are issued, register specifiers for pending operands are
renamed to names of reservation stations.

When both operands are available and a functional unit is available, the
instruction in the reservation station can be executed.

When the result is available, it is put on the CDB with the reservation that
produced it. All reservation stations waiting to use that result will update
their operands simultaneously.

Operation:

Busy - indicates if current value in reg.
 0 - available in reg. 1 - not avail.
Tag - reservation that will supply
 register value.

 7

Lecture 21 - 1

Tomasulo's Algorithm is an example of dynamic scheduling. In dynamic scheduling the ID -
WB stages of the five-stage RISC pipeline are split into three stages to allow for out-of-order
execution:
1. Issue - decodes instructions and checks for structural hazards. Instructions are issued

in-order through a FIFO queue to maintain correct data flow. If there is not a free reservation
station of the appropriate type, the instruction queue stalls.

2. Read operands - waits until no data hazards, then read operands
3. Write result - send the result to the CDB to be grabbed by any waiting register or reservation

stations
All instructions pass through the issue stage in order, but instructions stalling on operands can be
bypassed by later instructions whose operands are available.

RAW hazards are handled by delaying instructions in reservation stations until all their operands
are available.

WAR and WAW hazards are handled by renaming registers in instructions by reservation station
numbers.

Load and Store instructions to different memory addresses can be done in any order, but the
relative order of a Store and accesses to the same memory location must be maintained. One way
to perform dynamic disambiguation of memory references, is to perform effective address
calculations of Loads and Stores in program order in the issue stage.
� Before issuing a Load from the instruction queue, make sure that its effective address does

not match the address of any Store instruction in the Store buffers. If there is a match, stall
the instruction queue until, the corresponding Store completes. (Alternatively, the Store
could forward the value to the corresponding Load)

� Before issuing a Store from the instruction queue, make sure that its effective address does
not match the address of any Store or Load instructions in the Store or Load buffers.

Lecture 21 - 2

