
Instruction Pipelining - assembly-line idea used to speed instruction completion rate

Assume that an automobile assembly process takes 4 hours.

Chassis Motor Interior Exterior

If you divide the process into four equal stages, then ideally

time between completions =
time to complete one car

of stages

Problems:
� stages might not be balanced
� overhead of moving cars between stages
� two stages need same specialized tool (structural hazard)

Serial Execution

Instruction 2

Instruction 3

Instruction 4

Instruction 5

Instruction 1

time

Pipelined Execution - goal is to complete one instruction per clock cycle

Instruction 2

Instruction 3

Instruction 4

Instruction 5

Instruction 1

time

Lecture 3 - 1

MIPS (simple RISC) instruction formats:

Arithmetic: add R1, R2, R3

opcode

opcode

opcode

opcode

opcode

 dest
 reg

 operand

 operand

 operand

 operand

 1 reg

 1 reg

 1 reg

 reg

 operand

 operand

 operand

 base

 2 reg

 2 reg

 2 reg

 reg

Conditional Branch: beq R1, R2, end_if

Arithmetic with immediate: addi R1, R2, 8

Load/Store: lw R1, 16(R2)

unused

offset to label

 offset from

Unconditional Branch/"jump": j someLabel PC-relative

 base reg

large offset from PC
or absolute address

all instruction 32-bits in length

 immediate
 value

RISC Instruction Pipelining Example: One possible break down of instruction execution.

� ALU or load instruction: write result into register fileWBWrite-back

� load: read memory from effective address into pipeline register
� store: write reg value from ID stage to memory at effective address

MEMMemory
access

Calculate using operands prepared in ID
� memory ref: add base reg to offset to form effective address
� reg-reg ALU: ALU performs specified calculation
� reg-immediate ALU: ALU performs specified calculation

EXExecution /
Effective addr

Determine opcode, read registers, compare registers (if branch),
sign-extend immediate if needed, compute target address of branch,
update PC if branch

IDInstruction
Decode

Read next instruction into CPU and increment PC by 4 byte (to next
instruction)

IFInstruction
Fetch

ActionsAbbreviationStage

Lecture 3 - 2

Pipeline latches/registers between each stage. Hold temporary results and act like an IR. Some of the
hardware components used (e.g., Memory and Register File) are shown as if they are duplicated, but they are
not.

IF/ID
latch

EX/MEM
latch

ID/EX
latch

MEM/WB
latch

IF ID EX MEM WB

Decoder
ALU

ALU

ALU
Data
Memory

Register

Register

File

File

Instr.
Memory

Copy of
Instr.

Opcode
operand
1 addr.
operand
2 addr
(or reg#)

operand
1 value

operand
2 value

opcode

dest.dest.
addr/regaddr/reg

dest
addr/reg

result
value

Problems that delay/stall the pipeline:

� structural hazard - a piece of hardware is needed by several stages at the same time, e.g., Memory in IF,
and MEM. This might require stages to sequentially access the hardware, or duplicate into two memories.

� data hazard - an instruction depends on the results of a previous instruction which has not been calculated
yet. (RAW) read-after-write example: ADD R3, R2, R1 ; R3 R2 + R1�

SUB R4, R3, R5 ; R4 R3 - R5�

 In what stage does the ADD instruction update R3?

 In what stage does the SUB instruction read R3?

� control hazard - branching makes it difficult to fetch the “correct” instructions to be executed

Lecture 3 - 3

Data Hazards:
Wrong result in below since SUB read the "old" value of R3 in ID, before ADD updates R3 in WB stage.

WBMEMEXIDIFSUB R4, R3, R5
WBMEMEXIDIFADD R3, R2, R1

121110987654321Instructions
Time �

Solution Alternatives:
1) Introduce stalls - stall reading of R3 in last half of ID until ADD writes R3 in first half of WB

WBMEMEXIDstallstallIFSUB R4, R3, R5
WBMEMEXIDIFADD R3, R2, R1

121110987654321Instructions
Time �

2) Add additional hardware (bypass-signal paths) to “foward” R3’s new value to the SUB instruction:

IF/ID
latch

EX/MEM
latch

ID/EX
latch

MEM/WB
latch

IF ID EX MEM WB

Decoder

ALU

ALU

ALU

Data
Memory

Register

Register

File

File

Instr.
Memory

dest
addr/reg

result
value

ADDSUB

old R3
value

new R3
value

M
U
X

No stalls needed in this case.

WBMEMEXIDIFSUB R4, R3, R5
WBMEMEXIDIFADD R3, R2, R1

121110987654321Instructions
Time �

What would control the MUX?

Lecture 3 - 4

MUX Operation:

0

1

2

3

OutputInputs

Control Signals - (binary #) to select
which input gets sent to output

Consider the following code: ADD R3, R2, R1
STORE R3, 4(R4)

What would the timing be without bypass-signal paths/forwarding?

(Assume that R3 can be written in the first half of the WB stage and its new value read in the last half of the
same stage).

IFSTORE R3, 4(R4)
WBMEMEXIDIFADD R3, R2, R1

121110987654321Instructions
Time �

Lecture 3 - 5

Solution:

WBMEMEXIDstallstallIFSTORE R3, 4(R4)
WBMEMEXIDIFADD R3, R2, R1

121110987654321Instructions
Time �

What would the timing be with bypass-signal paths?

IFSTORE R3, 4(R4)
WBMEMEXIDIFADD R3, R2, R1

121110987654321Instructions
Time �

Lecture 3 - 6

WBMEMEXIDIFSTORE R3, 4(R4)
WBMEMEXIDIFADD R3, R2, R1

121110987654321Instructions
Time �

What (draw) bypass-signal paths are needed for the above example.

IF/ID
latch

EX/MEM
latch

ID/EX
latch

MEM/WB
latch

IF ID EX MEM WB

Decoder

ALU

ALU

ALU

Data
Memory

Register

Register

File

File

Instr.
Memory

dest
addr/reg

result
value

ADDSUB

old R3
value

new R3
value

Lecture 3 - 7

How many cycles are needed to perform the following AL program without forwarding?

ADD R6, R3, R2
IFSUB R5, R4, R3

WBMEMEXIDIFADD R3, R2, R1
16151413121110987654321Instructions

Time �

How many cycles are needed to perform the following AL program with forwarding?

ADD R6, R3, R2
IFSUB R5, R4, R3

WBMEMEXIDIFADD R3, R2, R1
16151413121110987654321Instructions

Time �

Draw ALL the bypass-signal paths needed for the above example.

IF/ID
latch

EX/MEM
latch

ID/EX
latch

MEM/WB
latch

IF ID EX MEM WB

Decoder

ALU

ALU

ALU

Data
Memory

Register

Register

File

File

Instr.
Memory

dest
addr/reg

result
value

Lecture 3 - 8

How many cycles are needed to perform the following AL program without forwarding?

ADD R6, R5, R4
STORE R5, 8(R6)
SUB R5, R4, R3

IFLOAD R4, 4(R3)
WBMEMEXIDIFADD R3, R2, R1

16151413121110987654321Instructions
Time �

How many cycles are needed to perform the following AL program with forwarding?

ADD R6, R5, R4
STORE R5, 8(R6)
SUB R5, R4, R3

IFLOAD R4, 4(R3)
WBMEMEXIDIFADD R3, R2, R1

16151413121110987654321Instructions
Time �

Draw ALL the bypass-signal paths needed for the above example.

IF/ID
latch

EX/MEM
latch

ID/EX
latch

MEM/WB
latch

IF ID EX MEM WB

Decoder

ALU

ALU

ALU

Data
Memory

Register

Register

File

File

Instr.
Memory

dest
addr/reg

result
value

Lecture 3 - 9

