The final will be 10-11:50 AM on Thursday, December 18 in ITT 328. The test will be **open-book and open-note**. About 70% of the Final will focus on the material since the last test, and about 30% will focus on tests 1 and 2 material.

Chapter 9.1-9.4.1 Alternate Architectures (and lecture 21 notes):

- RISC machines: RISC vs. CISC, overlapping register windows
- Flynn’s taxonomy
- Superpipelining
- Superscalar characteristics
- Instruction-level parallelism and its limitations due to write-read/RAW data dependencies, procedural dependencies, and resource conflicts.
- Machine-level parallelism
- Instruction-issue policies: In-order Issue with In-order Completion, In-order Issue with Out-of-Order Completion, and Out-of-Order Issue with Out-of-Order Completion
- Dependencies: true data dependencies (read-after-write/RAW), output (write-write/WAW) dependencies, antidependencies (read-write/WAR)
- Instruction window, Register renaming, Tomasulo’s algorithm
- General understanding of the Pentium 4 pipeline (DON’T memory stages, but just try to get the general concepts)
- IA-64 / Itanium Features:
 * Uses *explicit parallel instruction computing (EPIC)* from *very-long-instruction-word (VLIW)* architecture.
 * Provides hardware support for efficient procedure calls and returns via large number of registers with overlapping register windows
 * Branch predication (NOT branch prediction) that allows speculative execution along both paths of a branch

Multiprocessor Systems (Power Point Presentations) and Chapter 9

Introduction to Multiprocessors

- Need for multiprocessors and clusters
- Amdahl’s law
- Trends in supercomputers (Top 500) toward clusters
- Flynn’s Classification: SISD, SIMD, MISD, MIMD
- Multiprocessor basic organizations: Communication models (message passing vs. shared memory (UMA, NUMA) and physical connection (network vs. bus))

Bus Connected Multiprocessors

- Single bus multiprocessor issues: cache coherency, process synchronization, spin locks

Network Connected Multiprocessors

- Network connected multiprocessors: message passing (sends & receives), cache coherency in NUMAs (directory-base protocols)
- Interconnection network (IN) metrics: cost (# switches, links/switch, link width, link length), network bandwidth, bisection bandwidth, others (latency, throughput, # routing hops)
- Interconnection network types: bus, ring, fully connected, crossbar, hypercube, 2D & 3D mesh/torus, fat tree
- Network of Workstations (NOW) Clusters

Multicore processors

- Performance issues related to the memory hierarchy, e.g., the need for data reuses
- Current Multicore Problems: small caches, TLB not covering caches, memory bandwidth bottleneck
- Motivation of multithreading on a chip: hide stalls due to dependency, cache misses, etc. and thus increase utilization of functional units
- Types of multithreading on a chip: fine-grain, course-grain, simultaneous multithreading (SMT)