High-level Language Programmer’s View

main:
maxNum = 3
maxPower = 4

CalculatePowers(maxNum, maxPower)

(**)

CalculatePowers(In: integer numLimit, integer powerLimit)

integer num, pow, result

for num := 1 to numLimit do
 for pow := 1 to powerLimit do
 Power(num, pow, result)
(***)
print num “ raised to “ pow “ power is “ result

end for pow
end for num

end CalculatePowers

Power(In: integer n, integer e, Out: result)

if e = 0 then
 result = 1
else if e = 1 then
 result = n
else
 Power(n, e - 1, result)
 result = result * n
end if

end Power

1) Trace the next execution of the recursive function Power by showing the run-time stack.

2) What is the most number of call frames on the stack at any one time for the whole program?
RISC Assembly-language Programmer’s View

3) Trace the hypothetical assembly language program and indicate the resulting value of the registers Reg1, Reg2, Reg3, and Reg4.

```
.data ; Variables setup in MEMORY before execution
X: .WORD 2 ; variable X initialized at assembly time to 2
Y: .WORD 3 ; variable Y initialized at assembly time to 3
Z: .WORD 0 ; variable Z initialized at assembly time to 0

.program
Begin:
LOAD Reg1, X ; loads X’s value into register Reg1
LOAD Reg2, Y
ZERO  Reg3 ; sets Reg3’s value to 0
MOVE Reg4, Reg2 ; Reg4 := Reg2
Loop:
ADD  Reg3, Reg3, Reg1 ; Reg3 := Reg3 + Reg1
SUB_IMMEDIATE  Reg4, Reg4, #1 ; Reg4 := Reg4 - 1
BRANCH_GREATER_THAN_ZERO Reg4, Loop ; if Reg4 > 0 then goto Loop label
STORE  Reg3, Z ; store Reg3’s value into variable Z
End:
```

<table>
<thead>
<tr>
<th>Resulting register values</th>
<th>Reg1</th>
<th>Reg2</th>
<th>Reg3</th>
<th>Reg4</th>
</tr>
</thead>
</table>

a) What is the resulting value in Z?

b) What calculation does this code perform?

4) During the execution of the above assembly language code: (Assuming no cache)
a) How many memory reads were performed? (state any assumptions)
 # data reads =

 # instruction reads (assume one read per instruction fetch) =

b) How many memory writes were performed? (state any assumptions)

5) List (in decreasing order of importance) why somebody would write assembly language code.
 (top reason) a)

 b)

 c)
Instruction/Machine Cycle of stored-program computer - repeat all day

1. Fetch Instruction - read instruction pointed at by the program counter (PC) from memory into Instr. Reg. (IR)
2. Decode Instruction - figure out what kind of instruction was read
3. Fetch Operands - get operand values from the memory or registers
4. Execute Instruction - do some operation with the operands to get some result
5. Write Result - put the result into a register or in a memory location
6) What has to happen to the PC during the instruction cycle?
7) “Moore’s law” (Gordon Moore - cofounder of Intel) - predicts that the number of transistors that could be put on a single chip would double every year (later changed to 18 months).
 a) What kind of curve (# transistors vs. time) does Moore’s law predict? (linear, quadratic, exponential, etc.)

 b) As gate density increases on a chip, why would clock speed increase?

8) From the above graph, what architectural improvements seem to have the biggest impact on performance?