Fall 2009 Name: Mol T

. Computer Architecture Test 1.
Question 1. {25 points)
FI/Di pi DIKCO ¢o COFO FO FOEI g EI/WO wo

lateh latch latch latch latch
Data . Data
Memory . Memory
{] Sf N r}
(} ﬁs{r Decoder - % imx
N emory Register f ﬁ \3319{ Register
File 4 -
R Register - K dest A
Filo addr/reg

a) For the six stage pipeline of the text {see abové), complete the following timing diagram assuming NO
by-pass signal paths. (RECALL that LOAD reads 2 memory value into a register; STORE saves a register
to memory) Assume that we cannot write to a register and read from that same register in the same clock

cycle.
, . Time —

Instructions 1121314516789 10]11]12]13[14]15[16/17]18]18]20]21[22

11-[LOAD RS, 8(R6) |FI|DI|CO{FO| EL WO |
% L ADDR2, R3,R5 | |F1 DTl cdd —| - | FO £l|wo

13.|SUB RS, R2, B3 ETl Ol — | — 7o~ |~ |FO E1|&0
14:|STORE RS, 4(R6) _ Fil= |- iDL —| - |cd* |— |FOETIWe
15:ILOAD RS, 12(R5) EC| = |— | = | —| ~|DEiLO FO BT |lwe
16: STORE RS, O(R3) FrlDTCol— |- | Fol E7 e

b) Complete the following timing diagram assuming by-pass signal paths.

. Time — :
| Instructions 112]3]4]5]6]7]8]9] 10]11[1z[13[14]15[16]17[18]19]20]21]22
% 11:[LOAD RS, 8(R6) | FI| DI |CO|FO| EI WO .
12:|ADD R2, R3, R5 FL DT (o | FoY EY] b o
13:|SUB R5, R2, R3 Il o[(s | vo | Erjtd
14:|STORE R3, 4(R6) ¥l (I 2| vexEa|id
15:[LOAD R8, 12(R5) 2 D= [Co| Fo| 1 |e?
'16.|STORE RS, O(R3) e [l el e

¢} In the diagram at the top of the page add all by-pass signal paths used in parf (b).

d) For the above program, indicate pairs of instruction that have (one pair is enough for each type)
i) write-read/read-after-write (RAW)/true” data dependencies - Rg betwees L1 g f TL

3 1) output/write-write/write-afier-write (WAW) dependencies - 32_(; é{ Fesen :gmg 44,;5? z 2

i) antidependencies/read-write/write-after-read (WAR) dependencies - R f; é £ »1[‘,-,,;, 6 L) qa jf; 17

15

Fall 2009 - Name:

Question 2. (25 points) Consider the following code segmerit that counts the number of zero entries in a
two-dimensional atrray named “matrix.”

Fal g 1% -
count = 0 I j fg}‘& ?g;éﬁi’,? - MﬁTw’?‘ff ;{f:{:ﬁ;i,f’
for row = 1 to n do e T L34 BRE e W T v b
for column = 1 to n do e enmy 7 fEDTor Fo T TER oy

if matrix[row] [column] == 0 then - (fo’ly; PK;‘;UI(3 %fs’fff"ﬁ;/

¢count = count + 1
end 1f

i

end for <————" i, ., [/"f
end for ‘é__________.. e 7
Wt TR L P oy et

4 z a) Where in the code would unconditional branches be used and where would conditional branches be used?

b) If the compiler could statically predict by opcode for the conditional branches (i.e., select whether to use
) machine language statements like: “BRANCH_LE_PREDICT_NOT_TAKEN” or
3 “BRANCH_LE_PREDICT _TAKEN"), then which conditional branches would be
"PREDICT_NOT_TAKEN" and which would be "PREDICT TAKEN"?

c) Under the below assumptions, answer the following questions:
. = 100, i.e., matrix is a 100 x 100
. there are 50 elements in the matrix that are 0 with none of the 0 elements adjacent on a row
« the outcome of conditional branches is known at the end of the EI stage
* target addresses of all branches is known at the end of the CO stage
Under the above assumptions, answer the following questions:
1) If static predict-never-taken is used by the hardware, then what will be the total branch penalty (# cycles
wasted) for the algorithm? (Here assume NO branch-history table) For partial credit, explain your answer.

‘{W\ Pon/ Q’if}’ A’[;f T4 ”[‘o/ (o i&ﬁﬂ ead 79//‘ /OL’”’-’ 1\7[‘-/‘)"j

C2/> Cots mﬁﬂf{m £ éf‘f vt { r/ﬂ/
| - TV
L"/ 2 Xloo Y wloo 2 xjoexron DY (00xips-50)

ii) If a branch-history table with one history bit per entry is used, then what will be the total branch penalty
(# cycles wasted) for the algorithm? (Assume predict-not taken is used if there is no match in the
branch-history table) For partial credit, explain your answer.

*F:»n {4, {,Mp ‘IQ/ S Jo bomn {400 £ Cm’iﬁﬁm I;_p (ﬁj

4 {E‘MJ untoad 5-2«! J . Mww/
s i . e ﬁuwﬁﬂww%,

o5 X 0()“"(7(s X 50

o4 2

iit} Explain how a branch-history table with two history bits per entry (i.e., two wrong predictions needed
before changing the prediction) would decrease the total branch penalty (# cycles wasted) for the algorithm?
(Assume predict-not taken is used if there is no match in the branch-history table)

‘ GFOF ?M/. Q&g} ‘%ﬁ ‘lcﬂf (4’1%%4 ¢ WO _'Qf] ‘P (’aqj

YAt
Lt e e
et i,

L e L x(d0 L Yxsd

Féll 2009 Name:

Question 3. (15 points) Characteristics of CISC (complex instruction set computers) computers are:
= variable length instruction format

both simple and complex instructions that require a variable number of cycles to execute
large number of addressing modes with some complex addressing modes
Why do these characteristics make CISC hard to pipeline?

P{Qel?’%é’m@ oo ks best it each 5’?%;%@;- Con be
short 04 the sawe fen g W@géfﬁﬁf’ ‘v s“‘? i»%yéd?i
”ﬁ"yfgﬁ e::}{? (A {"%‘L g\f éﬁ !;?j EXE fe ?{gj

- Vﬂ.rlﬁé(& 'Qﬂ?# f\ﬂj’“ﬁm %ﬁ#‘iﬁﬂ% ﬁﬁggé@g -t éﬁfﬁg 7o fesroa

hﬁw }‘%’ggg_g ?%fﬁ?ﬁf}f +5 ﬁ?#@j gjiwﬁg?j “?f‘jg,g ﬁﬁé) ?ﬁ"% 4
whole tngtr ,

- Ca_%fgigg 145t s tile iaﬁf}éﬁ 12 exectfe st ﬁf*f? ragte é@éei?gﬁ
+he _‘ : ; .

— tampley i, ﬁagﬁé@-g wiake Fetchia ap&m/f Monsict wor
“?’/g"?’iﬁ i [/Z/(C, /;;~/C ,H/\& £ -&g,.‘?iféfﬁ? ‘ng £ /f

Question 4. (10 points) Characteristics of RISC (reduced instruction set computers) computers are:
= only LOAD and STORE instructions access memory using simple addressing modes
arithmetic and conditional branch instructions only use register operands

® large number of registers

s fixed length (e.g., all 32-bit) instructions
Why is a large number of registers important for keeping the amount of CPU to/from memory traffic low?

M ﬁ/\}} Y @?& 4 iz?ﬁw ggjﬁs “’%% éiéii j@é‘ﬁgf; Dsr e é"?ﬁw«g oy ﬁ&{{ |
Miay tines avoid NZM//”] it X gih de

Fall 2009 Name:

Question 5. (15 points) Assume ADD and SUB take one cycle, LOAD takes six cycles, and MUL takes
four cycles to execute.

a) What would be the first instruction to complete using Tomasula’s algorithm on the following program?

’@LOAD R4, 4(R8) @4‘9@

7y MUL R2, R4, R7 P9

J‘,STORE R6, 8(’@)

f\

@

[ySuB R3, RZ, R4 _ Y
ADD R2, R10, R12<— §{artf @ and ?ﬂ"«;‘;ﬁ .{‘!@ ricet P c:mfg&-gf&
LOAD R12, 16(R2)
ADD R1, R2, R3

b) How does register renaming help the STORE instruction save to the correct memory address while still
allowing later instructions to execute?

TA& gTQ HE éve‘“ é& Wﬂé\‘ét"gﬂb? GM%J%!QM%VK%M
SHatha for th MaL Jufﬂy + 9 v loe b +e

G%&W F‘fdfgﬂ{gf /(Zﬂg/f -}jk @‘Qﬁ iﬂﬁ”ff % @y%fﬁf?fﬁ
b "””# z‘”*{,;’{f ; “; o “‘j% §?§Q?§ g

Question 6. (10 points) The Intel x86 family of processors (including the Pentium TV discussed in class)
starting in the early 70°s. Since the idea of RISC had not been thought of yet, the x86 instruction set is a
CISC. Explain how the more modern processors (like the Pentium IV) in this family are able to make use of
RISC concepts while still executing the x86 CISC programs.

e

’!//m X ﬁfe; (T gf i1 §”‘fﬂs g,-“};?’%“?f G e ygyf&’@f va/ j’
%?f}mf i;\fff +3 @ch ke micrs *p/ﬂem‘f(rwf So 7%3}9«»
, f!, & i
{an éﬁ }OW *"‘%j ' Svpersiq fé?ﬁ’gﬁ!j)

